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Drift-Wave Turbulence from a Soliton Gas
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A theory of drift-wave turbulence as a low-density gas of drift-wave solitons is devel-
oped. In the ideal-gas approximation to the many-soliton system the dynamical form
factor S(k,w) is computed and shown to peak at w > kv, with a substantial width Aw for a

given azimuthal wave number.

PACS numbers: 52.35.Kt, 52.35.Mw, 52.35.Ra

In this Letter we propose, as an alternative
theoretical framework for the interpretation of
the plasma fluctuation measurements,'”3 the con-
cept of an (nearly) ideal gas of drift-wave solitons.
Similar ideas have recently been studied in the
context of condensed matter physics,* where sol-
itons are shown to contribute to the free energy
of the nonlinear lattice.®

The turbulence theory presented here, although
interesting in itself as an alternative representa-
tion of chaotic fields in terms of coherent nonlin-
ear objects, was principally motivated by the ap-
parent inability of renormalized turbulence the-
ories to account for the frequency spectrum meas-
ured by electromagnetic scattering experiments
in tokamak plasmas. With a given scattering ge-
ometry determining the fluctuation wave number
k, the observed frequency dependence of the dy-
namical form factor S(%,w) for the electron den-
sity fluctuations (|on, (k,w)|? is peaked at fre-
quency w, (k) greater than the linear mode fre-
quency w'(k) and has a width A w(k) that is greater
than or comparable to w!(k). An explanation for
the location of the peak frequency w, (k) can be
given in terms of a Doppler shift® of the entire
spectrum from an ambipolar radial electric field;
however, the width A w(k) of the observed spec-
trum exceeds that given by renormalized turbu-
lence theory and remains unexplained.

The broad frequency spectrum may lie outside
the scope of renormalized theories wherein the
truncation of high-order correlations, based for
example on the assumption’ of “maximal random-
ness,” leads to A w(k) « (|dn, (k)| < w'(k) for the
fluctuation levels observed. An example of the
application of renormalized turbulence theory is
given by the formulas of Horton® for

I(k)=(le®(®)/T,|?=(|on, (k)|? /n,*

and A w(k)=v, in a simple two-dimensional hydro-
dynamic model for drift-wave turbulence. The
soliton gas theory of drift-wave turbulence pre-
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sented here overcomes this difficulty in a natural
manner by using highly correlated objects as a
nonlinear basis for representing the drift-wave
fields. After introducing a simple one-dimension-
al nonlinear model® for the drift-wave problem,
we show that a typical root mean square level
@,=(e*®?/T, 2)1/2 of the drift-wave field system
may contain a large number, N, of solitons. In
the ideal-gas limit we show that the width of the
frequency spectrum A w(k) is proportional to ¢,
rather than ¢ 2.

The pressureless ion limit of the two-fluid de-
scription of drift waves is based on the ion con-
tinuity equation 8,,; +V *(nv,)=0 with v, given
by the EXB drift VE =cb XV &(r,t)/B and the non-
linear polarization drift 5;, =(c®m,; /e,.Bz)(dl_f_L/dt).
The electron density evolves through the quasi-
static equilibrium given by

n,(r,t)=n(x)expled(r,t)/T, (x)],

where the density and electron temperature T, (x)
are nonuniform in the radial direction x across
the constant magnetic field BZ. We define the
scale lengths for the density and temperature
variations by 7, "'=-9 lm(x) and 9, =8 InT (x)/
9, lm(x), and the scale length for wave disper-
sion by ion inertial length p=c(m;T, )12/eB. In-
voking quasineutrality determines the general
nonlinear wave equation®° for @(;,t). Here we
consider the small-%£,p, one-dimensional limit
of the general equation. For (k,p)?*<1 and (k,p)
X (R, pP<n,(p/r,), the equation first given by
Petviashvili® reduces!! to the Korteweg—de Vries
(KdV) equation

3,9 +3,¢0 +3,% —¢ 8,9 =0. (1)

In Eq. (1) qo(y,t)=nee<1>('f,t)/Te; y is measured in
units of p, and time ¢ in units of p/v, where the
electron diamagnetic drift velocity is v, =pc, /7,
=cT, /eBr,. The radial structure of the solutions
of Eq. (1) is given by a linear eigenmode problem
involving v, (x) and T, (x).* The eigenmode width
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is roughly Ax =(pr, )2, The system is periodic

in the y direction with length L which is typically
2mv where 7 is the radius of the confinement de-
vice at the maximum of v,. The energy of the
drift-wave field is given by E =3/¢2dy measured
in units of nT ,AxL_/n,>2.

We propose that a turbulent state described by
Eq. (1) will consist of a broad wave-number spec-
trum, I(2), of small-amplitude modes with w' (%)
<kv, together with an ensemble of solitons ¢ (v
—ut) withu >v,. The soliton “dispersion relation”
w=ku determines the frequencies at which the
solitons contribute to the spectrum. As a first
approximation we ignore the small-amplitude
component, supposing that its spectrum (%),
w'(k)) can be added to that derived here for the
drift-wave solitons.

The soliton component to the drift-wave field
is

Ns
fp(y,t)-‘-z:}lfps(y,t;ymu,,), (2)

where

qu(y,t;yo,u)
= 3(u — 1)sech?4(u — 1)*/%(y -yo=ut)]. (3)

In writing Eq. (2) we ignore the overlap of the
solitons, assuming that their density is small.
Furthermore, it is well known that soliton-
soliton collisions are completely elastic, giving
only a phase shift of the soliton positions.

The inverse scattering transformation allows
the determination of the number density n(x) of
solitons emitted by any particular initial state.
For moderate-amplitude initial states, ¢ > (p/
7,)?, the total number of solitons produced is
large and a WKB approximation of the inverse
problem can be used to obtain'®

_V3 dy
n,le]= y '/;K-A/ZW s (4)
A=3w-1),

where A is the soliton amplitude. This formula
is strictly valid only for initial conditions with
¢(y)<0 for all ¥ (otherwise significant nonsoliton
excitations affect the distribution), but will be
used here as a first approximation.

We introduce a statistical description through
an average over initial configurations. A more
complete theory of drift waves would include vari-
ous linear growth and damping terms which would
cause an infinitesimal disturbance to grow and
evolve according to weak-turbulence theory.
Eventually, the system will saturate at some

randomly phased spectrum (|¢, |? where wave
numbers up to k, ~1 are excited. At this point,
if the amplitude is large enough, strong correla-
tions will develop as a result of the nonlinearity
as implied by Eq. (1). Thus we take as the initial
state for Eq. (1) a random-phased field ¢ with
some given mean square amplitude (|¢ |3 =¢ 2

The distribution of solitons emerging from this
state may be obtained by averaging Eq. (4) over
the random phases of the initial configuration.
Since the width of the spectrum in 2 space is
much larger than that of the typical soliton wave
number allowed by the approximate Eq. (1), we
can take the initial spectrum to be white noise.
The average over Eq. (4) is then a Gaussian func-
tional integral which can be done by discretiza-
tion:

A -9;°
fsw)=> Elf_md% exp[z—go-:g-}nu[gv], (5)
where ¢ ; represents ¢ (x;) and x; =(i/n)L. Here
we have defined the mean soliton distribution
function f () such that

Joy fow)au=N,,
where N, is the mean number of solitons. Upon
conversion of the integral in Eq. (4) for n, to a
sum, the integral in Eq. (5) is easily done:
V3/ L A? A
fs(”)‘§<g_p?5> exp[- 1_65?]17'1/2(%)’ (6)

where D_,/, is a parabolic cylinder function.**
The total number of solitons is then

N, =f"a du f ()= aLe 2,
a=TE)/(12V2r%)2,
The spectral density is the Fourier transform
of the two-point correlation function, (¢ (x +¢,¢

+7)¢(x,t)). Use of the soliton field of Eq. (2) with
Eq. (3) gives

_ 288, , [ 2[ kv, \'2
== k?fs< k)csch Tk (—L—w_ kvd> ] ,
(8)

(7

S(k,w)

where, since N, >1, the sum over solitons in
Eq. (2) has been converted to an integral with the
distribution function as weight.

Several features of the spectrum are evident
directly from Eq. (6) independent of the explicit
form of f («). First, S(k,w)=0 for w<kv, be-
cause all solitons have u >v,. The spectrum is
exponentially small near w~kv, and peaks at w
~kv [1+0(9,)].
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Approximation of the parabolic cylinder func-
tion in Eq. (6) and substitution into Eq. (8) yields

' 2 V3rk
k% exp [_—1690 02] cschz[——y—Al 2} , Ak,
S(k,w)ocz

2
R2AY/2 exp[gqiz }cschz[%g], A>q,,
where A =3(w/kv, —1). The peak of the spectrum
occurs at w, ~kv,(1+0.7¢,) for (mk)? <@, and at
w, ~kv 1+ 0.7(1rk<p02)2/5] for (mk)?>>>@,. The
roughly linear increase of w, with £ agrees with
the experiments in the region kp <1. The spec-
tral width also increases linearly with £ and ¢ .

Several important effects which have been
omitted from our model will contribute to the
width of the spectrum seen in an experiment.
Some fraction of the fluctuation energy will be
contained in nearly linear modes. This contribu-
tion to the spectrum will peak at w=w*(k) <kv,.
Another spectral contribution will arise from
higher-order dispersion and other perturbations
which should be added to Eq. (1). The resulting
equation (e.g., Petviashvili®) will be no longer
completely integrable and soliton collisions will
be no longer elastic. A collision between two
solitons with speeds u, and u, would excite fre-
quencies w=ku, —ku, with k =k, —k,. These
driven modes will contribute to S(k,w) in the re-
gion w <kv,. Finally, we will show in a future
work that negative-velocity solitons are excited
for larger kp and these yield a spectral peak at
ws 0.

We do not regard the limitation of the results of
this paper to the one-dimensional case as funda-
mental. The Petviashvili equation possesses two-
dimensional solitary waves® qualitatively similar
to Eq. (3), and therefore the frequency spectrum
will also resemble ours qualitatively.
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In conclusion, we suggest that from both a the-
oretical and an experimental point of view, a full
understanding of drift-wave turbulence may re-
quire a theory of both the continuum component
wip?, I(K,t) (as in conventional turbulence theory)
and the soliton component k+ U, f,(u,t) of the tur-
bulent plasma.
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