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Ponderomotive Psendopotential Near Gyroresonance
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The enhancement of the ponderomotive potential near gyroresonance is investigated both
experimentally and theoretically. Because of nonadiabaticity near gyroresonance the po-
tential is Qnite and depends on the transit time of the particle through the rf field struc-
ture.

PACS numbers: 52.35.Mw, 52.55.Mg

It is known that a spatially localized rf electric
field E of frequency (d produces an average static
force, i.e., a ponderomotive force. ' In the pres-
ence of a static magnetic field B a large enhance-
ment of the ponderomotive force is predicted' to
appear as ~ approaches the particle gyrofrequen-
cy O. The standard expression' given for the pon-
deromotive pseudopotential is

y, =q'IEI'/4m(~'- n'), (1)

where q and rn are the charge and mass of the
particle. The nonphysical singularity in Eg. (1)
arises because in obtaining this expression the
gradient scale length I of the electric field is as-
sumed to be large compared to v/((u —0), where
v is the unperturbed particle velocity. However,
this adiabatic approximation' is not valid near
gyroresonance, and hence the singularity in Eq.
(1) is suspect. Indeed, for ~=A the particles do
not respond adiabatically and are instead reso-
nantly heated. Since the ponderomotive force
plays a fundamental rol, e in many nonlinear proc-
esses in plasma physics, it is important to under-
stand the singular behavior near the gyrofre-
quency. In particular, efforts are in progress
to utilize the singular nature of p~ to selectively
confine ions of different q/m for isotope separa-
tion" and to plug open-ended confinement sys-
tems. '8

In this Letter, we present measurements of the
ponderomotive potential near gyroresonance and

compare them with a calculation which includes
nonadiabatic effects. It is found, both experi-
mentally and theoretically, that p~ is small at
~ =0 rather than singular. In fact, the maximum
enhancement in y~ does not occur at ~=0, but
at the transition from the nonadiabatic to the adi-
abatic regime, namely, when &v=0+1.7v l/. In
the nonadiabatic regime strong heating is ob-
served primarily perpendicular to B.

The experiment is performed by injecting a low-
density (single-particle limit) monoenergetic
pulse of ions through an electrostatic rf structure
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FIG. 1. Schematic of the experiment.

as shown in Fig. 1. The rf el, ectric field ampli-
tude is increased until the transmitted current
disappears. At this point p~ is equal to the
kinetic energy mv'/2 of the particles. The ion
source is a thermionic' Li' emitter' which is
biased to a positive potential V, . A pulse of ions
of energy qV, is produced by gating a grid from
V&V, to V=O for a duration of 20 p, s. The ions
are guided along the axis of a grounded conduct-
ing cylinder by a uniform axial magnetic field 8,
=1.8 kG. The beam radius is 0.5 cm, and the
cylinder radius is 7.3 cm. The rf antenna con-
sists of bvo electrically isolated electrodes made

by splitting a cylinder in half lengthwise. It is
excited through a center-tapped transformer so
that E is perpendicular to B on axis. %e have
calculated the vacuum rf field E(r, z) analytically
to relate E to the rf potential + V, q applied to the
electrodes. On axis, the field can be approxi-
mated by a Gaussian profile E(0,z) =yE, exp(-z'/
2l') with scale length l which can be varied by
changing the length of the antenna. The ions
which pass through the antenna are collected by
an electrode which is 137 cm away from the
source.

The ponderomotive potential is measured for a
fixed value of ~, 0, l, and ~ by increasing V, f
until the transmitted ion current disappears. For
this value of V, f the ponderomotive potential
equals the initial kinetic energy. If the gyrofre-
quency enhancement of the ponderomotive poten-
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tial is large then a relatively small rf electric
field is required to reflect the particles and vice
versa. For frequencies near the gyrofrequency,
strong cyclotron heating occurs and particles can
be collected on the antenna if the gyroradius is
large. In order to insure that the decrease in
the transmitted ion current is due to the pondero-
motive force, the reflected particles are elec-
trostatically reflected again at the gate grid and
collected for analysis by turning off the rf voltage.
Only data with a significant fraction of reflected
particles are reported here. The initial kinetic
energy of the ions is q V, + 15% as verified by
time-of-flight analysis and retarding-field analyz-
er measurements. The electric field amplitude
on axisi, is obtained from V, & by using our an-
alytical solutions for the vacuum field. This is
justified because the ion density (& 2X10' cm ')
is purposely small to minimize space-charge ef-
fects. The gradient scale length l is al.so obtained
from these calculations since the antenna radius
and length are known.

Figure 2 shows the behavior of the ponderomo-
tive potential near the gyrofrequency. p~ is
scaled to q'E, '/4mQ' as suggested by Eq. (1) to
facilitate comparison of the data (points) with the
theoretical predictions (solid curves). The curve
for v/lQ= 0 is given by Eq. (1) and the rest will
be described later. Five sets of data for different
values of l and v are shown to demonstrate the
important parametric dependences. Away from
gyroresonance q~ agrees quantitatively with the
prediction of Eq. (1) whereas near Q the data dis-
agree even qualitatively; y~ reaches a maximum
at a frequency greater than 0 and tends toward a
small value at Q. There are three sets of data
which have the same value of v/lQ but different
values of L and v. These data agree with one
another within the experimental error indicating
that the relevant parameter is v/lQ. By obtaining
data over a wide range of parameters, we find
that the maximum in q~ occurs at a frequency ~
=Q+1.7v/l. As a result, the maximum enhance-
ment of the ponderomotive potential depends on
various parameters through the figure of merit
v/lQ; the implication is that in order to obtain a
significant enhancement of the ponderomotive
force near gyroresonance v/lQ must be small. .

To explain these results it is necessary to in-
tegrate the equation of motion properly as a par-
ticle traverses an electric field structure of
finite extent. Consider the exact equation of mo-
tion for a particle with position r in the magnetic
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FIG. 2. Scaled ponderomotive potential vs frequency
for different conditions. The points are measurements
and the curves are the theoretical predictions. The
curve for v /lQ = 0 is given by Eq. (1).

field- B=B,z,
~ 0

r = (q/m)E(r, t)+Qrxz. (2)

where E(r, , t) is evaluated at the average location
r, . The slow response of the particle is deter-
mined by the static ponderomotive force

(4)

where the angular brackets denote an average
over the fast time scale 2'/&u. The parallel com-
ponent responsible for stopping the particle has
two contributions, (qy& dZ, /dy) and (qzz dE, /dz) .
The latter gives the usual unmagnetized contribu-
tion' which is not of interest here and is quite
small in our experiment because E, = 0 on axis
(y = 0) where the particles are injected. With V
&E =0 the first term becomes (qyzdE„/dz). To
evaluate this we solve for y& by integrating Eq.

For simplicity, assume that E=[E,(y, z)y+E, (y,
z)z]cos(&ut+P), where ( is a phase factor and V
&&K = 0. We proceed to solve Eq. (2) by employing
a multiple-time-scale perturbation expansion
r(t) = r, (t)+ rz(t), where r~ gives the fast response
of the particle and r, varies on slow time scale
(compared to 2m/~). By expanding E(r, t) about
r, assuming ~r&I «l and equating terms on simi-
lar time scales, we obtain

0 ~ 4

r~ = (q/m)E(r, , t)+ Qr~ xz,
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(3),

yf =(q/mQ)J dt'E, [0,z, (t')] sin[Q(t —f')] cos(~t'+g). (5)

In the adiabatic limit l(~ —Q)/v»1, E, (0, z, ) can be removed from the integral, yz becomes singular,
and the standard result, i.e. , Eq. (1), is recovered. However, near gyroresonance E, must be re-
tained inside the time history integral. In general, Eq. (5) is difficult to solve, and hence we make the
simplification that z, (t) =vt. That is, we integrate over the unperturbed particle orbit retaining E, in-
side the integral. We shall return to this point later. Substituting y& into Eq. (4) and defining the pon-
deromotive pseudopotential as y~(0, z)=- —f'„dz'F~(0, z') z we obtain

yz(o, z)=
8 Z 2E, (0;z)rmz„(z)+

" "
lz„(z)l*),8mQv v

where Im refers to the imaginary part and

(6)

e„(z)=-f „d z'E, (0,z')e xp[i(Q +n~)( z' —z)/v], n =+1. (7)

In the adiabatic limit (&u —Q)l/v» 1, Eq. (6) re-
duces to Eq. (1). Otherwise the strength of the

potential has an additional dependence on the elec-
tric field profile and the velocity of the particle.

Use of a Gaussian profile for E, in Eq. (7) gives
an analytical expression for y~ (O, z) in terms of
the plasma dispersion function. " Proceeding to
identify y~ (0, 0) with the maximum stopping power
measured in the experiment, one arrives at the
solid curves exhibited in Fig. 2. The calculations
agree well with the experimental data. This re-
sult also explains previous rf plugging experi-
ments, "in which the maximum ponderomotive
stopping occurred at frequencies above the gyro-
frequency, without having to invoke collective
effects.

In obtaining Eq. (6) it is assumed that the parti-
cl.e orbit is unperturbed. In order to understand
the error associated with this approximation
when applied to reflected particles we have com-
pared the analytical calculation with results of
exact numerical solutions to the equation of mo-
tion. For each value of v/lQ we solved Eq. (2)
numerically for thirty values of the phase factor
g between 0 and 2m. The electric field used cor
responds to the Gaussian profile described pre-
viously. Numerically the ponderomotive potential
is obtained by computing the phase-averaged de-
crease in kinetic energy at z =0.

Representative numerical results are shown in

Fig. 3. The solid curve is the same analytical
calculation shown in Fig. 2 for v/lQ =0.11. The
points are calculated numerically for two ampli-
tudes of the electric field. For the solid points

Eo is small and the particle orbits are barely
perturbed. As expected the agreement with the
perturbation calculation is excellent. For the
circles the electric field amplitude is increased
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FIG. 3. Scaled ponderomotive potentiaI vs frequency
for v /l0 = 0.11. The curve is the analytical result and
the points are obtained numerical. ly for passing and
ref1ected particles.

! just enough to ref l.ect the particles at each fre-
quency. Here the maximum in p~ is slightly
larger by 17% than that predicted by Eq. (6) and

occurs slightly closer to the gyrofrequency in
agreement with the experimental data in Fig. 2
for v/lQ =0.11. The behavior of p~ is character-
istic of a particle with a slightly smaller unper-
turbed velocity than the initial v = 0.11/Q. Phys-
ically this is expected because near the r..eiiec-
tion point the particle moves more slowly and
therefore samples a larger force than estimated
when using the unperturbed trajectory. Similar
results have been obtained for different values of
v/lQ. They all indicate that the use of unperturbed
orbits causes a slight underestimate of the poten-
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tial for reflected particles because their average
velocity is smaller than the initial velocity. Nev-
ertheless, the simple analytical calculation pre-
dicts the salient results to an accuracy better
than 20'%%uo and indicates the important scaling de-
pendence on v/lQ. In applications where a (15-
20)'%%uo change is acceptable the perturbation cal-
culation is more useful and instructive than the
tedious numerical solution.

In summary, a second-order perturbation cal-
culation illustrates the finite nature of the pon-
deromotive effect near the gyroresonance and

agrees with detailed experimental observations
and numerical calculations with test ions. Near
the gyrofrequency the ponderomotive pseudopo-
tential is a function not only of position but also
depends on the velocity of the particles. Phys-
ically, this occurs when the transit time l/v is
short compared to the time required for the par-
ticle to see a change in the phase of the electric
field, i.e., (e —0) . In the nonadiabatic regime,
the notion of a time-independent force breaks
down and stochastic heating occurs. " Since adi-
abaticity is intrinsic to the ponderomotive force
its role must be considered in any realistic ap-
plication.
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The criterion for the existence of vortexlike ion phase-space configurations, as ob-
tained by a standard pseudopotential method, is found to coincide with the criterion for
the linear instability for two (cold) counterstreaming ion beams. A nonlinear equation is
derived, which demonstrates that this instability actually evolves into such phase-space
configurations. A small, but nonzero, ion temperature turns out to be essential for the
saturation into stationary structures.

PACS numbers: 52.35.Py

Numerical simulations' demonstrated that elec-
tron-electron two-stream instabilities evolve into
rather stable vortexlike phase-space structures
(also called electron holes' ). Such equilibrium
configurations were subsequently observed in a
laboratory experiment. ' Numerical solutions of

the ion Vlasov equation, ~ under the assumption of
isothermally Boltzmann distr ibuted electr ons,
demonstrated that similar structures could evolve
also in ion phase space, in connection with the
formation of ion-acoustic shocks. Also this re-
sult found experimental confirmation. ' A unified
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