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A model of spin-2 statistics that explains the observed frequencies on the basis of the
validity of the principle of locality is proposed. The model is based on the observation
that certain density conditions on the unit sphere correspond with the observed frequen-
cies while the resulting expectation values violate Bell's inequality.
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Bell' has observed that no hidden-variable the-
ory satisfying a principle of locality can repro-
duce the quantum statistics of electron pairs in
the singlet spin state. Bell's argument was sim-
pl, ified by signer' and put in its most general
testable form by Clauser and Horne. ' Various ex-
periments designed to test the locality principle
have shown the observed frequencies to conform
with quantum mechanics (i.e. , to viol. ate Bell' s
inequality). &s a result, a wide variety of so-
called "objective local theories" were ruled out.
There is, however, a logical possibility that has
escaped attention. It might be the case that there
is nothing wrong with the locality principle, and
the violation of Bell's inequality indicates rather
a limitation in the mathematical theory of prob-
ability. In other words, we can conceive of
mathematical situations where a natural concept
of probability emerges which is not captured by
the usual (Kolmogorov) axioms of probabil. ity
theory. %hat I have in mind is not a radical ex-
tension of probability (such as introducing nega-
tive or complex probabil. ity values) but rather a
conservative extension as will. be clarified bel.ow.
The purpose of this article is to turn this logical
possibility into a physical model that explains the
observed frequencies on the basis of the validity
of the locality principle. A more detailed account

that includes complete proofs and generalizations
to other spin (angular momentum) states, as well
as some predictions, will be published shortly.

Let 8"' be the (surface of a) unit sphere in
three-dimensional. Euclidean space: 8"'=(x
GE"'~ ~x~ = 1] . Define a spin function as any
function, s:8"'-(-2, —,'f, which satisfies s(-x)
= —s(x). The purpose of the first part of this pa-
per is to develop some mathematical constraints
on spin functions which are treated purely hypo-
thetically at this stage, without introducing any
physical assumptions.

Every spin function divides the sphere into two
halves, (x ~

s(x)=-.'j and (x~ s(x)=--.'). rn the
general case, we suppose that we do not know the
exact values of a spin function s but that we have
some information, statistical in nature, about
the way the set (x

~
s(x) = &} is distributed over the

sphere. I shall deal with a particular type of
such information. I.et y~S"' and 0&0&~. De-
note by c(y, 6) the set of all unit vectors that form
an angle 9 with y, that is c(y, 9)=(x

~

x y =cos9).
c(y, 9) is a circle on the sphere with radius sin9
and center on the vector y (or -y). Let me be
the Lebesgue measure on the circle c(y, 6), so
that mete(y, 6)]=2vsin9. Let s be a spin function.
Then if the set (x

~
s(x) =-,) 9 c(y, 9) is me meas-

urablee,

the expression (2m sin6) 'ms [(x ~
s (x) =-,'j
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9 c(y, 6)] is the (average) density of (x
~
s(x)=2j in c(y, 6) We»v«h«oilow»g:

Existence theorem. —There exists a spin function s such that for all ye~"' and all o«&~ the set
fx

~
s (x) = z] fl c(y, 6) is m ~ measurable and

m [(x ~

s(x)=-'} A c( 8)]

I sin'(-,'6) if s(y)=-p.
The complete proof of the theorem will. be pub-

lished separately. The existence theorem belongs
to a family of "strange" or seemingly "paradoxi-
cal" results that one can prove in set theory. The
proof involves transfinite induction on circles and
is based on tmo observations. Firstl, y, that the
intersection of two nonidentical circl.es contains
at most two points and, secondly, that any subset
of c(y, 8) whose coordinality is strictly less than
the continuum is m measurable and has nce meas-
ure zero. To ensure that the second premise is
true, we have to assume the validity of the con-
tinuum hypothesis, or at least the validity of the
(strictly) weaker Martin's axiom. ' It is important
to note that there exists no analytic expression or
algorithm by which one can calculate the values
of a spin function that satisfy Eq. (1) for the dif-
ferent directions. In fact, the set(x

~
s(x) = P

turns out to be nonmeasurabl. e in terms of the
I ebesgue measure on the sphere and the existence
theorem may turn out to be independent of the
usual axioms of set theory. The proof of the the-
orem actually establishes the existence of infinite-
ly many spin functions that satisfy (1).

Let F be the family of spin functions with this
property and l.et 0, be the group of orthogonal,
transformations in F."'. If s~ 5 and a~0, then
the spin function s ~ n defined by s ~ n(x) = s[n(x)]
is also in 5. This follows from the fact that the
density condition applies uniformly to all circl.es
of a given radius. Thus 5 is 6, invariant. There
are subsets of F which are invariant as welL.
With s E 5 fixed, the set (s ~ n

~
n ~O J is trivially

invariant and is in fact infinite. This can easily
be proved if we observe that the group of "real
rotations" (without reflections) in E"' is simple
(i.e. , has no nontrivial invariant subgroups).

Suppose we know that a given spin function s
satisfies condition (1), but we do not know the
values of s except at one point, s(y) =-, , say.
Then it is reasonable to interpret the expression
(2m sin8) 'm~[fx

~
s(x)=2] Ac(y, 6)] [=cos'(-', 8) in

this case] as the probability that s(x) = 2 for x
& c(y, 8). Thus cos'(28) is the conditional p) ob-
ability of s(x) = ~ given s(y)=-, for a single se E
and alL x, y which satisfy x y = cos0.

Note that s is a single spin function which has

definite values everywhere on the sphere our
use of probabil, ities reflects our ignorance of
these values.

I have interpreted formula (1) as an expression
for conditional probabilities. A natural question
to ask is whether we can find a probability space
from which we get the values of (1) by conditional-
ization. In other words me are looking for a prob-
ability space such that for all y~S"' the event
"spin up in the y direction" is defined and has
probability &. Also we want that for all x and y
the probability of the joint event "spin up in the x
direction and spin up in the y direction" wiLL be
—,
' cos'(-', 6), where 8 is the angle between x and y.
%ith use of Bell's inequality one can prove that
no such probability space exists 6 [Roughly speak-
ing the values 2 cos'(26) are incompatibl, e with the
additivity axiom for probability. ] My way out of
this problem is to interpret cos'(-', 6) as the con-
ditional expectation for "spin up" on a circle,
given that the spin is up in the center of the circle.
From this perspective Bell's theorem shoms that
one cannot "coll.ect" aLL these conditions and rep-
resent them uniformly on a single probability
space. From a mathematical standpoint it seems
therefore natural to extend the concept of prob-
abil. ity to include conditions of this kind. The
physical significance of this extension is that it
corresponds with relative frequencies of observ-
able events.

Let us adopt the extreme realist position and

maintain that every electron at each given moment
has a definite spin in all directions. That is, we
associate a spin function s with every electron at
every given moment (different electrons may have
different spin functions). We do not know the val-
ues of s for any given el.ectron but assume that
al/ electron spin functions share a common prop-
erty, namely, they all belong to a family 5, of
the form (s, ~ n

~
naos, where s, is some fixed

(yet unknown) spin function that satisfies the den-
sity formula (1). As the result of an interaction
an electron spin function may be transformed to
another spin function. I assume, however, that
the transformation is always of the form s-s. n,
where + is a rotation or reflection of space. The
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orthogonal transformation & depends on the type
of interaction and on the initial conditions —the
precise nature of this dependence is unknown. (A
possible speculation: It may be somehow related
to the so-called Wigner rotations. )'

The present model proposes that all electron
spin functions satisfy the density formula (1). In
other words, the density values (or the condition-
al probabilities) are invariant. I also assume
that any spin function s~, has the same chance
of being realized as any other function of +„' this
may be regarded as a reflection of the isotropy
of space.

Suppose that we pass a beam of electrons
through a Stern-Gerlach apparatus in a given@
direction. As a result of this measurement each
one of the electron spin functions will undergo an
orthogonal transformation. I assume that the
measurement does not change the spin value in the
y direction itself, and thus the orthogonal trans-
formations leave y invariant in this case. If we
now take the subbeam of the original beam which
is polarized up in the y direction and pass it
through a second Stern-Gerlach apparatus in a
different x direction, the relative frequency of
the event "spin up in the x direction" in this sub-
beam will be approximately cos'(~9), where 9 is
the angle betweenx andy. The reason for this is
as follows: I et s„.. . , s„be the spin functions of
the electrons in the subbeam. All these functions
satisfy the density condition (1), and also s, (y)
=~ for j =1, . . .,n; therefore if A)=&x ls, (x)= 2&

8 c(y, 9), thenms(A, )/2~ sin9 =cos'(~9) for
j =1, . . .,n. I have also assumed that every func-
tion of +, has the same chance of being realized
and thus, apart from the fact that the beam is
polarized up in the y direction, the sample is
random with respect to its spin functions. This
means that the sets A, are mutually independent
in c(y, 9). It follows from the (strong) law of
large numbers that

almost everywhere on c(y, 9), where g „ is the
indicator function of 4, . Thus the relative fre-
quencies conform with the density formula.

It is natural at this stage to look for a probabi1. —

ity measure on +, such that the observed frequen-
cies would correspond with the measure of the
set 1s~S, l s(x) =~ and s(y) =~). As noted above
no such measure exists and we are therefore left
with a nonclassical concept of probability.

Up to this point the model achieves no more

than previous proposals in the literature' for re-
covering the quantum statistics of successive
measurements on a sin gIe spin-& particle by de-
fining a "spin function" which assumes a precise
value in any direction. These models, in effect,
simulate interference effects by assuming that a
measurement disturbs the spin function in a de-
finite (though unknown) way. For precisely this
reason, they are unable to account for the statis-
tical correlations of coupled systems without in--
troducing a nonlocal mechanism for transforming
a measurement disturbance instantaneously from
one system to the other. In the model I have pro-
posed a measurement of the spin in one direction
does change the spin value in various different
directions (by rotating or reflecting the spin func-
tion) but it does not introduce a statistical dis-
turbance. In my view the essence of the Einstein-
Podolshy Rosen "pa-radox" is that it shores that
the conditiona/ probabilities are, in fact, invari
O'Pit.

From the Pauli exclusion principle, we know
that two interacting electrons emerge from the
interaction in the singlet state. In our terminolo-
gy, this means after the interaction the electrons
have opposite spins in all directions, that is
s, (x) =-s, (x) where s, and s, are the correspond-
ing spin functions. Hence one can gain knowledge
of the values of s, in two different directions x,y
by directly measuring s, (x) and inferring the val-
us of s,(y) from a measurement of s,(-y). If the
electrons are sufficiently separated when the
measurements are performed, we can assume
that they do not interfere with one another. (This
is the principle of locality. ) Suppose that we have
a source of electron pairs that emits the electrons
of each pair with opposite spin functions and in
opposite directions. %e get two beams that travel
in opposite directions, the electron spin functions
in each beam are randomly oriented, and the spin
values of a given electron in the right-hand beam
are oppositely correlated with the spin values of
its pair electron in the left-hand beam. The rela-
tive frequency of the event "spin up in the x direc-
tion for electron 1 and spin down in they direction
for electron 2" is icos'(~9) and thus the condi-
tional probability of "spin up in the x direction
for electron 1 given that the spin is up in the y di-
rection for electron 1" is cos (&9). Since in the
present model, the measurements establish the
simultaneous spin values of a single electron in
two directions, they serve as a verification of the
density formula (1) and also show it to be invari-
ant.



VOLUME 48, NUMBER 19 PHYSICAL REVIEW LETTERS 10 MA+ 1982

The interpretation of joint probabilities as den-
sity conditions on circles, and the fact that these
conditions are invariant, is a unique feature of
the proposed model. The invariance is a key fea-
ture since without it one cannot explain (locally)
the fact that the relative frequencies of successive
measurements on a single electron are 'numerical-
ly identical to electron pair correlations. This
is the reason why this model is the first to ac-
count for the Einstein-Podolsky-Rosen experi-
ment without violating the principle of locality.
Indeed, all the above observations are based on
the validity of the principle of locality, that is,
the statistical independence of measurements per-
formed on electron pairs in the singlet state. The
relative frequencies violate Bell's inequality the
way they do because the locality principle is A'ue.
The violation of Bell's inequality reflects a
mathematical truth, namely, that certain density
conditions are incompatible with the existing the-
ory of probability.

Conceptually this is the crucial point. The
standard explanations of Bell's paradox all as-
sume the validity of probability theory together
with its definitions of statistical independence and
conditionalization. It is believed, in other words,
that Kolmogorov's axioms ultimately capture
what we mean by the term "probability. " This
attitude resembles Kant's view of Euclidean georn-
etry as an a priori synthetic truth. There are
good independent mathematical reasons for ex-
tending the concept of probability and there seem
to be good physical reasons as well. I suggest
treating the theory of probability in the same

manner that Riemann and Einstein treated geom-
etry.

The author wishes to thank J. Bub for many crit-
ical and fruitful discussions and many valuable
suggestions. The article is part of the author' s
doctoral dissertation.
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