¹D. V. Lang, J. Appl. Phys. <u>45</u>, 3014 (1974), and <u>47</u>, 3587 (1976).

²D. Pons and S. Makram-Ebeid, J. Phys. (Paris) <u>40</u>, 1161 (1979).

³S. Makram-Ebeid, Appl. Phys. Lett. <u>37</u>, 464 (1980), and in *Defects in Semiconductors*, edited by J. Narayan and T. Y. Tan (North-Holland, New York, 1981), Vol. 2, p. 495.

⁴S. Makram-Ebeid, G. M. Martin, and D. W. Woodard, J. Phys. Soc. Jpn. <u>49</u>, 287 (1980).

⁵J. R. Oppenheimer, Phys. Rev. <u>31</u>, 66 (1928).

 $^6\mathrm{K}.$ Huang and A. Rhys, Proc. Roy. Soc. London, Ser. A 204, 406 (1950).

⁷S. Makram-Ebeid and M. Lannoo, to be published. ⁸A. M. Stoneham, *Theory of Defects in Solids* (Clarendon, Oxford, 1975).

⁹M. G. Burt, J. Phys. C 12, 4827 (1979).

 $^{10}\text{C.}$ H. Henry and D. V. Lang, Phys. Rev. B $\underline{15},~989$ (1977).

¹¹D. Bois and A. Chantre, Rev. Phys. Appl. <u>15</u>, 631 (1980).

¹²T. Jesper, B. Hamilton, and A. R. Peaker, in *Semi-Insulating III-V Materials*, edited by G. J. Rees (Shiva Publishing LTD, Orpington, United Kingdom, 1980), p. 233.

¹³P. Leyral, F. Litty, S. Loualiche, A. Nouailhat, and G. Guillot, to be published.

¹⁴V. Piekara, J. M. Langer, and E. B. Krulowska-Fulde, Solid State Commun. <u>23</u>, 583 (1977).

¹⁵A. M. Hennel, W. Szuskiewicz, G. Martinez, and

B. Clerjaud, Rev. Phys. Appl. <u>15</u>, 697 (1980).

¹⁶B. K. Ridley, J. Phys. C <u>11</u>, 2323 (1978).

¹⁷A. Mitonneau, A. Mircea, G. M. Martin, and D. Pons, Rev. Phys. Appl. <u>14</u>, 853 (1979).

Stress Tuning of the Metal-Insulator Transition at Millikelvin Temperatures

M. A. Paalanen,^(a) T. F. Rosenbaum, G. A. Thomas, and R. N. Bhatt Bell Laboratories, Murray Hill, New Jersey 07974 (Received 26 February 1982)

A high-resolution scan of the metal-insulator transition in Si:P at millikelvin temperatures has been obtained by applying uniaxial stress. A sharp, but continuous, metalinsulator transition is resolved, with conductivities below Mott's "minimum" value σ_M . These measurements join smoothly with previous low-resolution experiments, ruling out any discontinuity at σ_M . The reproducible critical behavior disagrees with predictions of existing scaling theories of localization.

PACS numbers: 71.30.+h, 72.15.Cz, 72.20.Fr

Our understanding of the metal-insulator transition in random systems rests in part on Anderson's demonstration¹ of the absence of electronic diffusion at zero temperature in a sufficiently strong random potential and in part on the work of Mott² and Hubbard³ emphasizing the role of electron correlations in stabilizing the insulating state. This transition has been observed in different materials at electron concentrations n_c varying over eight orders of magnitude,⁴ but with a universal scaling for which Mott has argued using simple models:

$$n_c^{1/3}a_{\rm B}\simeq \frac{1}{4}$$
, (1)

where $a_{\rm B}$ is the radius of the isolated impurity wave function. A prototype of such systems is a random array of P donors placed substitutionally into a crystalline Si lattice.

Following these ideas Mott suggested⁵ in 1972 that the zero-temperature conductivity $\sigma(0)$ jumped from zero in the insulator to a minimum

metallic value

$$\sigma_{\rm M} = C_{\rm M} e^2 / \hbar n_c^{-1/3}, \qquad (2)$$

where $C_{\rm M} = \frac{1}{20}$ within a factor of 2. For Si:P, $\sigma_{\rm M} = 20 \ (\Omega \ {\rm cm})^{-1}$. According to Mott's recent survey,⁶ all existing data support this remarkable conclusion.

In contrast, the single-particle scaling theories of localization⁷ (neglecting electron-electron interactions) predict a continuous variation through the critical region, i.e., $\sigma(0) < \sigma_M$, of the form

$$\sigma(0) \simeq \sigma_{\rm M} (n/n_c - 1)^{\nu}, \qquad (3)$$

where $\nu \approx 1$. Although experimental studies^{8,9} of Si:P and α -Ge_{1-x}Au_x have found $\sigma(0)$ values significantly less than σ_M , Mott has argued⁶ correctly that macroscopic inhomogeneities could have played a dominant role for $\sigma(0) < \sigma_M$. Furthermore, in Si:P, the sharpness of the transition⁸ precluded resolution of this critical region. Thus, Eqs. (2) and (3) have escaped a definitive test.

We report here a high-resolution, zero-temperature study of the metal-insulator transition, using uniaxial compressive stress S to tune n_{c} through n of uncompensated, slightly insulating Si:P samples. We find reproducible behavior for $n/n_c - 1 > 10^{-3}$ of the form $\sigma(0) \propto (S - S_c)^{\nu}$, with $\nu = 0.48 \pm 0.07$, which is distinguishable from apparent rounding of the transition at lower n/n_c . The reproducible behavior is consistent with previous findings⁸ for $\sigma(0) > \sigma_{\rm M}$ which gave $\sigma(0)$ $= 13\sigma_{\rm M}(n/n_c - 1)^{\nu}$, with $\nu = 0.55 \pm 0.10$. We claim that the reproducibility and consistency identify intrinsic behavior; the data thus rule out Mott's minimum metallic conductivity and are inconsistent with existing scaling theories of localization.

The capability of significantly varying n_c with modest stresses¹⁰ relies both on the small ener-

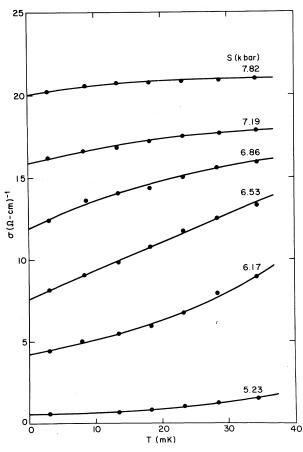


FIG. 1. Conductivity σ of a sample of Si:P as a function of temperature T for a series of values of uniaxial stress S near the metal-insulator transition. The solid lines are fits by the form $\sigma(T) = \sigma(0) + BT^{\beta}$ where $\sigma(0)$, B, and β are fitting parameters.

gy scale of the donor band (~1 meV, rather than typical electronic energies ~1 eV) and on the multivalley nature of the Si conduction band. The latter allows a direct coupling of the donor wave function¹⁰ and thus the width of the donor band to uniaxial deformations. For effective-mass donors with a degenerate ground state, the variation of n_c can be reduced¹¹ to a Mott criterion [Eq. (1)] with different effective Bohr radii in the highstress (single valley) and stress-free (many valley) cases.

In Si:P the valley degeneracy of the donor wave function is lifted at zero stress as a result of the short-range central-cell potential, which also causes a shrinkage of the ground-state wavefunction radius. Application of stress mixes in the relatively more extended excited states and reduces n_c as per Eq. (1): An insulator is thus transformed into a metal at T = 0 K. [This qualitative conclusion of Eq. (1) is supported by a detailed calculation¹² of the effect of stress on the donor bands.] We approximate the (in general,

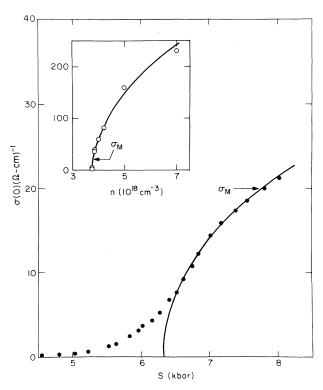


FIG. 2. Extrapolated values of zero-temperature conductivity $\sigma(0)$, obtained as illustrated in Fig. 1, as a function of uniaxial stress S. The solid line is fit to the region of $\sigma(0)$ which reproduces in three samples and has the form $\sigma(0) \propto (S - S_c)^{\nu}$ with $\nu = 0.49$. The inset shows $\sigma(0)$ vs *n* from Ref. 8 with the curve $\sigma(0)$ = $13\sigma_{\rm M}(n/n_c - 1)^{\nu}$ with $\nu = 0.55$.

nonlinear) variation of n_c with stress S by a linear relation over the critical region $(7.3 \pm 0.8 \text{ kbar}$ for our three samples), since it is a narrow range around a moderate value of S. At 4.2 K, our measurements of conductivity in fact show an essentially linear dependence on S between 4 and 12 kbar.

Our Si:P samples, with dimensions 0.3×0.8 \times 7.0 mm³, were prepared as in Ref. 8. Two were parallel cuts from the same wafer (perpendicular to the [111] axis), and in one of the slices two sections (samples 2 and 3) were measured with the same current leads. For sample 3, the voltage leads were not collinear with the current flow. The samples were mounted in a pressure device operated by ⁴He as illustrated in the inset to Fig. 3. S (applied approximately along $[12\overline{3}]$) was measured capacitively at the upper end of the sample. This device was thermally anchored to a Cu-nuclear cooling system, with T measured by using a ³He melting curve thermometer. The conductivity measurements were done at 11 Hz frequency and at power levels below 10^{-15} W.

Sample 1 was cooled twice from room temperature with quantitatively the same results. Samples 2 and 3 also showed the same critical behavior, and only differed from each other by 15% at low S. This reproducibility rules out large inhomogeneities in current and S. After initial stress cycling, the samples showed no hysteresis in S at constant T to within the accuracy of our measurements $[0.5\% \text{ in } \sigma(T)]$.

The variation of $\sigma(T)$ was similar for all our samples. In Fig. 1 we have plotted $\sigma(T)$ for sample 1 at values of S close to the transition. The extrapolations shown (based on least-squares fits by the form in the caption) indicate metallic, i.e., finite $\sigma(0)$ values below σ_M . Above 5 (Ω cm)⁻¹ the form of $\sigma(T)$ varies with S, but below all the samples had $\sigma(T) = \sigma(0) + AT^2$, as found in Ref. 8 for $\sigma(0) \leq \sigma_M / 10$. The T^2 term is not understood but a similar contribution has been shown to be related to surface conditions in insulating samples.¹³ For small S, the variation of $\sigma(0)$ (although sample dependent) is roughly exponential in S, inconsistent with the classical percolation¹⁴ form, $(n - n_c)^{1.6}$.

Figure 2 shows $\sigma(0)$ as a function of S for sample 1, while the inset exhibits the corresponding variation with *n*. By fitting the data in Fig. 2 above 6.5 kbar and the (similar) 3-mK data for samples 2 and 3 with the form $(S - S_c)^{\nu}$, we get S_c (kbar)=6.3, 6.5, and 6.5, all ± 0.2, and $\nu = 0.49$, 0.41, and 0.51, all ± 0.07. The quoted errors in-

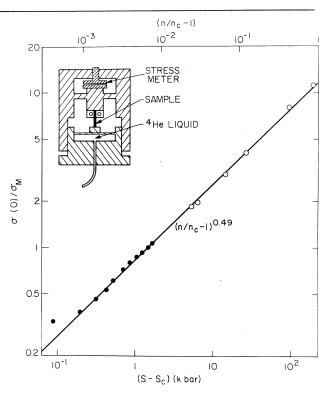


FIG. 3. A combination of the data from Fig. 2 and its inset to illustrate the smooth variations of $\sigma(0)$ through $\sigma_{\rm M}$. Values of $n/n_c - 1$ are shown on the upper scale based on the open circles from Ref. 8. Values of $S - S_c$ are shown on the lower scale based on the solid circles from this work. A combination of all the results gives $\nu = 0.48 \pm 0.07$.

clude not only small statistical errors, but also systematic errors inherent in the T = 0 K extrapolations and in the choice of the lowest S value to include in the fit. We argue that the agreement among samples indicates universal behavior above S_c in the region fitted by the solid line in Fig. 2.

If one assumes that n_c varies linearly with S, our values of ν agree with the previous $\nu = 0.55 \pm 0.10$. To emphasize this agreement, we combine both sets of Fig. 2 on a log-log scale in Fig. 3. The scaling of stress and density shown implies¹⁵ $(n/n_c - 1)/(S - S_c) = 5.4 \times 10^{-3} \text{ kbar}^{-1}$. The smooth variation rules out a significant change in the behavior of $\sigma(0)$ as it passes through σ_M . The solid line is a fit by the scaling form of Eq. (3) for $\frac{1}{4}\sigma_M \leq \sigma(0) \leq 13\sigma_M$ and $10^{-3} \leq n/n_c - 1 \leq 1$. The wide range of this fit suggests that the characteristic conductivity of the transition region may be significantly larger than σ_M . This conclusion is supported by the fact that the measured conductivity deviates markedly from either that calculated⁸ for free electrons or that deduced⁶ from the specific heat¹⁶ below a conductivity ~ $10\sigma_{\rm M}$, close to the Ioffe-Regal value¹⁷ $\sigma_{\rm IR} \simeq e^2/3\hbar n_c^{-1/3}$.

Even for $\sigma(0) < \sigma_{\rm M}$, estimated as the critical region by current scaling theories of localization,^{7,18} our results give a $\nu = 0.48 \pm 0.07$, inconsistent with the theoretical $\nu \approx 1$. We speculate that the more rapid variation of $\sigma(0)$ with $n - n_c$ arises from Coulomb effects whose importance has been emphasized by Mott.^{2,5,6} Additional evidence, attributed to Coulomb interactions in bulk systems, has come from the temperature,^{19,20} magnetic field,²⁰ and compensation²¹ dependence of the conductivity, and also from the tunneling conductance.²²

We would like to thank P. W. Anderson, E. I. Blount, D. S. Fisher, and P. A. Lee for helpful discussions and H. Dail for help with data acquisition.

^(a)Also at Joseph Henry Laboratory, Princeton University, Princeton, N. J. 08544.

¹P. W. Anderson, Phys. Rev. 109, 1492 (1958).

²N. F. Mott, *Metal-Insulator Transitions* (Taylor and Francis, London, 1974).

³J. Hubbard, Proc. Roy. Soc. London, Ser. A <u>277</u>, 237 (1964), and 281, 401 (1964).

⁴P. P. Edwards and M. J. Sienko, Phys. Rev. <u>17</u>, 2575 (1978).

⁵N. F. Mott, Philos. Mag. <u>26</u>, 1015 (1972).

⁶N. F. Mott, Philos. Mag. 44B, 265 (1981).

⁷E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. <u>42</u>, 673 (1979), and references therein.

⁸T. F. Rosenbaum, K. Andres, G. A. Thomas, and R. N. Bhatt, Phys. Rev. Lett. <u>45</u>, 1723 (1980); G. A. Thomas, T. F. Rosenbaum, and R. N. Bhatt, Phys. Rev. Lett. 46, 1435 (1981).

⁹B. W. Dodson, W. L. McMillan, J. M. Mochel, and R. C. Dynes, Phys. Rev. Lett. <u>46</u>, 46 (1981).

¹⁰M. Cuevas and H. Fritzsche, Phys. Rev. 137, A1847

(1965), and 139, A1628 (1965). Tuning of n_c can also be done with magnetic field as evidenced by the relatively high-T data of R. J. Sladek, J. Phys. Chem. Solids <u>8</u>, 515 (1959). W. Sasaki and C. Yamanouchi, J. Non-Cryst. Solids <u>4</u>, 183 (1970), used annealing of transmutation doped samples 6

¹¹R. N. Bhatt, Phys. Rev. B 24, 3630 (1981).

 12 R. N. Bhatt, to be published, calculated the variation of n_c for a Mott transition with a strong central-cell potential, using the method of polarized orbitals to construct the pseudopotential for the one-electron bands. To *lowest order*, the change in n_c is independent of direction for stresses normal to (111).

¹³Y. Ootuka, F. Komori, Y. Monden, S. Kobayashi, and W. Sasaki, Solid State Commun. <u>36</u>, 827 (1980); T. F. Rosenbaum, K. Andres, and G. A. Thomas, Solid State Commun. <u>35</u>, 663 (1980).

 14 E. S. Kirkpatrick, Rev. Mod. Phys. <u>45</u>, 574 (1973). 15 This constant agrees with that deduced by scaling the theoretical low-stress result (Ref. 12) with the relative change of the isolated donor wave function at high and low stresses, within the uncertainty in sample orientation.

¹⁶G. A. Thomas, Y. Ootuka, S. Kobayashi, and

W. Sasaki, Phys. Rev. B 24, 4886 (1981).

¹⁷A. F. Ioffe and A. R. Regel, Prog. Semicon. <u>4</u>, 237 (1960).

¹⁸C. Wegner, Z. Phys. B <u>25</u>, 327 (1976); W. L. Mc-Millan, Phys. Rev. B <u>24</u>, 2739 (1981); D. Vollhardt and P. Wölfle, Phys. Rev. Lett. <u>45</u>, 842 (1980); A. Mc-Kinnon and B. Kramer, Phys. Rev. Lett. <u>47</u>, 1546 (1981); Y. Imry, Phys. Rev. Lett. <u>44</u>, 469 (1980);

D. Belitz, A. Gold, and N. Götze, Z. Phys. B <u>44</u>, 273 (1981).

 19 T. F. Rosenbaum, K. Andres, G. A. Thomas, and P. A. Lee, Phys. Rev. Lett. <u>46</u>, 568 (1981).

²⁰T. Chui, P. Lindenfeld, W. L. McLean, and K. Mui,

Phys. Rev. Lett. <u>47</u>, 1617 (1981); T. F. Rosenbaum,

R. F. Milligan, G. A. Thomas, P. A. Lee, T. V. Ram-

akrishnan, R. N. Bhatt, K. DeConde, H. Hess, and

T. Perry, Phys. Rev. Lett. <u>47</u>, 1758 (1981).

²¹G. A. Thomas, Y. Ootuka, S. Katsumoto, S. Kobayashi, and W. Sasaki, to be published.

 22 R. C. Dynes and J. P. Garno, Phys. Rev. Lett. <u>46</u>, 137 (1981); W. L. McMillan and J. Mochel, Phys. Rev. Lett. <u>46</u>, 556 (1981); Y. Imry and Z. Ovadyahu, to be published.