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Computer Simulation of Nonlinear Ion-Electron Instability
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A computer simulation of a one-dimensional electron-ion plasma is described. The
results differ substantially from the predictions of the conventional theory of this system.
In particular, an instability is observed whose onset occurs for electron drifts well be-
low the threshold of the linear ion acoustic instability and which ultimately dominates the

nonlinear evolution of the linear instability.

PACS numbers: 52.25.Gj, 52.35.Py, 52.35.Ra, 52.65.+z

We report numerical experiments for an ion-
electron plasma that show an instability well be-
low the threshold predicted by linear theory. We
studied a simulation plasma with mass ratio m; /
m, =4 and temperature ratio T, /T; =1 in which,
initially, the average electron distribution {(fe)
=(2mv,%) Y2 expl— (v — v, )?/20,%]} drifts relative
to the average ion distribution {(f,) = (2mv,?)"1/2
Xexp(-v%/2v,2)} . According to linear theory such
a plasma is unstable (the ion acoustic instability
for physical mass ratios) for drifts exceeding a
certain threshold, v, =3.924v;. We observed an
instability for v, =1.5v;. The observation of this
instability, which is completely at variance with
linear theory, is the principal result of this Let-
ter. We describe several diagnostics that eluci-
date the nature of this instability. Finally, we
point out that these results are consistent with
recent theoretical predictions of the theory of
clumps and holes. This agreement suggests that
the results reported here may be the first obser-
vations of an important new type of plasma in-
stability.

For our simulations we used a highly optimizeclI

one-dimensional, electrostatic code with N,

=102 400 particles per species. We treated a
periodic system of length L =32.42),, where 2,
(=v, /w,;) is the Debye length and w,,; is the ion
plasma frequency. Various diagnostics were per-
formed which provide information about the fluc-
tuations Of of the distribution function: of =f — ().
For our spatially periodic and homogeneous sys-
tem, the ensemble average {(...) was approxi-
mated by a spatial average. The two basic diag-
nostics we used were the mean square electric
field and the mean square fluctuation {(0N)?) of
the number of particles, N (electron or ion), in

a phase-space cell of size Ax,Av. Here, 6N=N
—(N), where (N) is the mean number of particles
in a cell. We would have preferred to measure
the correlation function (6f(1)df(2)) ={df(x,,v,)8f(x,,
v,)) directly, for small x_=x, —x, and small v_
=v, - v,. Unfortunately, our value of nA; =3259.5
(n,=N, /L) was not large enough to provide ade-
quate statistical accuracy. Our diagnostics, how-
ever, derive from the correlation function since
the mean square electric field involves velocity
integrals over (6f 0f), while ((6N)? and {5f 6f) are
related through!

x + Ay v +Ap Ax Ay
(N =(n,[f, ax[, avofx,0)B=n2[ sdx.(ax=|x_|)[ a,dv_(Av =|v_|XoF(1)6F(2)) . (1)

Since ((6N)?) is a double integral of {5f0f), it is less sensitive to statistical error. The latter point is
clearer when one realizes that Eq. (1) can be solved for the correlation function in terms of a fourth

derivative of ((6N)?.
We can write, for each species,

(Of(1)6f(2)) =n,"*6(x . )8(v . Xf(1)) + £, (1,2) + £,(1,2), (2)

where the first term of Eq. (2) is the discrete-
particle self-correlation function and g,(1,2) ac-
counts for correlated fluctuations which shield
the discrete particles. g,(1,2) represents the ef-
fects of fluctuations over and above this level.
Using the first term of Eq. (2) in Eq. (1), we find
that the self-correlation contribution to {(6N)?) is
(N)—the value for randomly located discrete par-
ticles. This value is modified by the contribution

from g, ; in particular, as the linear stability
threshold is approached, the zeros of the dielec-
tric function will enhance {(6N)? through the emis-
sion and absorption of weakly damped waves. We
have calculated? this contribution to {(6N)?) and
have found it to be, consistently, much lower

than the values of {(6N)? observed in the simula-
tions (cf. Fig. 1). Our observations of {(6N)?) are,
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FIG. 1. Ton {(6N)2)/(N) for a phase-space cell of
dimensions Ax =1.963\;, Av = 0.1v; vs time forv,
= 2.5v;. The points are the simulation values measured
at different velocities: crosses, —1v;; plusses, 0v;;
asterisks, v;; and circles, 2v;. The dashed line is the
shielded discrete-test-particle level.

therefore, evidence for collective fluctuations
£,(1,2) well above the dressed test-particle level.
We measured {(6N)? in cells of size 0.05v;
<Av <3v; by 0.2);, <sAx <3);. The characteristic
sizes of the fluctuations in space (Ax), and in vel-
ocity (Av), were inferred from the dependence of
{(6N)? /(N) on Ax ,Av, given by Eq. (1). For Ax,
Av less than the characteristic size, ((6N)?/(N)
increases with Ax,Av since ((6N)? ~n (5 (Ax
XAv)? and (N) =n,(f)AxAv. For Ax,Av greater
than the characteristic size,

(BNY2) ~n 2Ax AV [~ dix. [~ dv _(OF(1)EF(2))

so that ((6N)?) /(N) approaches a constant value.
For Ax <(Ax), and Av>(Av),, and vice versa,
{(6N)? becomes proportional to Ax and Av, re-
spectively. Figure 2 is a typical plot of {(6N)?)/
(N), for the ions, versus cell size. It indicates
that the ion fluctuation curves stopped increasing
and turned over when Ax ~4), and Av ~0.1v,.
Thus, these values of Ax and Av represent the
characteristic sizes (Av), and (Ax),.

Figure 1 shows the time dependence of {(6N)?/
(N) for the ions for a run with v, =2.5v;. After
starting at unity, ((6N)®/(N) has risen by w,,?
=150 to the shielded discrete-particle level,
which we calculated to be 2.2. Subsequently,
growth occurred until w,,?=300. Following this
unstable growth phase, the instability saturated
when the electron distribution function formed a
plateau in velocity space. We measured the fluc-

tuation levels at —v;, 0, v;, and 2v;. Fluctuations

with phase velocities of v; and 2v; grew, while
those at 0 and —v; decayed. This would seem to
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FIG. 2. Ion {(6N)2)/(N) for a phase-space cell of
dimensions Ax,Av. The points are the simulation val-
ues: plusses, ((6N)%)/{N) vs 20Av /fv; at fixed Ax
=0.98\4; crosses, ((6N)2)/(N) vs Ax/A; at fixed
Av = 0.11},‘.

indicate that the instability grows in regions of
opposing velocity gradients of (f,) and (f;). Fur-
thermore, we note that the instability occurred
in regions of large negative 8(f;)/8v # 0—a region
where linear theory would predict strong damp-
ing of the fluctuations. Figure 3 shows that the
fluctuations are unstable over a wide region of
velocity space (0 <v <4v,). This is evidenced by
the ion tail and distorted electron distribution at
400w,, "!. These distortions in (f;) and (f,) are
not the result of discrete-particle collisions,
since the collisional relaxation time is substantial-
ly larger than the run time of the simulation.
Moreover, ion acoustic waves cannot be responsi-
ble, since, according to linear theory, they are
stable.

Numerous runs were made to study various
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FIG. 3. The spatially averaged distribution functions

for the ions and electrons for v, = 2.5v; at wp,t = 400

(solid curve) and at 0 (dashed curve).
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features of the instability: First, we examined
the effect of using different initial conditions to
start the simulation. These included quiet starts
with ((6N)? /(N) «<1; “thermal-level” starts with
{(6N)?) /{N)~1; and “noisy” starts with {(6N)?)/
(N)= 4. In all cases an instability was observed
for v, = 1.5v;. Thus, to trigger the instability we
did not require large-amplitude fluctuations. In
fact, the amplitude ((6N)?)/(N) ~1 corresponds to
e{@d 2 /m v 2~10"2, where (p?) is the mean
square potential.

Second, we investigated the dependence of the
instability on v,. Aside from the growth rate,
there were no apparent qualitative differences
between the runs for 1.50; sv,; <4.5v;. After an
initial growth stage, the instability saturated by
forming a quasilinear plateau. The ion distribu-
tion function developed a tail and the electron dis-
tribution function became significantly flattened
as indicated in Fig. 3. We emphasize that these
distortions were evident for v, both below and
above the linear stability threshold. The depend-
ence of v, the observed growth rate, onv, is il-
lustrated in Fig. 4. The measurements were
made, for the ions, at approximately the same
amplitude {(6N)?)/{N) for each run [the electron
((6N)?) /(N) gave similar growth rates]. The er-
ror bars indicate the spread in the measured
values of the growth rate when different methods
were used to obtain y. These methods consisted
of measuring y from the mean square electro-
static field, and from the time dependence of
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FIG. 4. The simulation values of the growth rate vy
vs the electron drift v;. Plusses denote single meas-
urements while the error bars include several meas-
urements. The growth rate y; obtained from linear
stability theory is also plotted.

((6N)?)/{N) at different phase velocities (v/v;
=0.5,1,2), and different cell sizes (Ax/x; =1,2,
Av/v; =0.1,0.2). Also shown in Fig. 4 is the
linear growth rate v, for the most unstable wave
number. It is clear that the nonlinear effects
dominated in the linearly unstable, as well as the
linearly stable, region since y; <vy.

The third feature we examined was the effect of
varying the parameter n,2,. When we decreased
ny\, to 815, no change in y occurred. From this,
we concluded that discrete-particle collisions ap-
parently did not play an important role. Below
the nonlinear threshold, we saw the fluctuations
decay. For v; =0, we measured the same decay
rate observed in a series of one-species calcula-
tions with n 2, =65 190 reported elsewhere.?

The measured characteristics of the instability
are consistent with the nonlinear theory of ion and
electron “clump” regeneration.* In a Vlasov plas-
ma, clumps result from the mixing of the incom-~
pressible phase-space density by turbulent fluc-
tuations.®® If the clump production rate is equal
to their destruction rate (through velocity stream-
ing and the turbulent electric fields) the clump
spectrum will regenerate. Overregeneration im-
plies an instability. In Ref. 4 it was theoretically
predicted, for the parameters of this simulation,
that a clump spectrum would regenerate in re-
gions of opposing velocity gradients for v, = 2.5v,.
In addition, the spectrum would exhibit a wide
phase-velocity spread (of the order of v;) and
characteristic scales similar to those observed
in this simulation. Moreover, approximate cal-
culations” show that for a mass ratio of 4, the
clump instability has an amplitude-dependent
growth rate proportional to the inverse ion trap-
ping time [T, = (Ax),/(Av),]. The constant of
proportionality (which is of the order of unity)
increases rapidly with v, and — (3(f,)/2v)a(f,)/
dv. The observed values of (Ax), and (Av), lead
to a trapping time of the order of 80w,, ! which
is consistent with the measured growth rates (cf.
Fig.4).

The existing calculations of clump regeneration
omit a number of terms that describe the effects
of self-binding of the fluctuations. Clumps are
enhancements (86f = 0) or depletions (&f <0) in the
local phase-space density. The depletions, or
“holes,” have the property of being self-binding.®
Such an effect would decrease the destruction rate
of the fluctuations and therefore reduce the pre-
dicted drift-velocity threshold. This would also
be consistent with the slow (about 0.17,,"') decay
rate observed at v, =0. It is interesting to note
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that a single, isolated phase-space hole has been
shown to be unstable for all v, >0.° This isolated-
hole instability is driven by opposing velocity
gradients of (f,) and (f,) and is the analog to the
turbulent clump instability.

Although the nonlinear instability discussed in
this Letter is one dimensional and driven by
velocity gradients, we believe that it is repre-
sentative of an important new class of instabilities
since clump and hole phenomena are predicted to
occur in three dimensions with a magnetic field.
For instance, it recently has been shown that a
single phase-space hole in a magnetic field is un-
stable to a spatial density gradient.® This result
implies that the clump instability will be driven
by a spatial density gradient. Furthermore, our
simulation indicates that large amplitudes are
not necessary for its onset. Indeed, we have ob-
served the instability growing out of thermal-
level fluctuations.
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Experimental Observations of Rotamak Equilibria
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Some experimental observations of rotamak equilibria made in a high-power, short-
duration (~ 80-us) experiment and a complementary low-power, long-duration experi-
ment are summarized. In the high-power experiment two possible equilibrium phases
have been identified: an oblate, compact torus configuration and a 8 = 1, mirrorlike con-
figuration. In the low-power experiment toroidal plasma current has been driven, and a
compact torus configuration has been maintained, for several milliseconds.

PACS numbers: 52.55.Gb

Compact toroid configurations are currently at-
tracting great interest because of their potential
engineering advantages compared with other to-
roidal fusion systems. In early 1979 the pro-
posal®' was made that the rotating-field method of
generating plasma currents®"® be wedded with the
compact toroid approach to fusion in an apparatus
which has subsequently come to be known as the
rotamak.

In the rotamak concept, a rotating magnetic
field is used to drive the steady toroidal current
in a compact torus device. An externally applied
“vertical” field couples with this toroidal plasma
current to provide the inwardly directed force
necessary for the equilibrium of the plasma ring.
A full description of the magnetic configuration
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and of the experimental device can be found in
Refs. 6 and 7. In the period since the publication
of Refs. 6 and 7, an extensive series of current
and magnetic field measurements have been made,
both on a high-power, short-duration rotamak de-
vice and on a complementary, low-power, long-
duration apparatus. In neither of these experi-
ments was a steady toroidal field employed. In
this Letter we present a summary of the more
important observations that have been made on
rotamak equilibria in these two experiments.

The high-power, short-duration experiment
differed from the one described in Refs. 6 and 7
in two respects. The frequency and duration of
the rotating field were 0.35 MHz and ~ 80 psec,
respectively (cf. 0.67 MHz and ~16 usec), and
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