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Path integrals for quantum mechanics have resisted formulations in which genuine measures—real
or complex—on g-space and/or p-space paths are involved. This situation is in marked contrast to
the Euclidean formulation of quantum mechanics (generalized diffusion theory) in which one has the
well-known Feynman-Kac formula based on the Wiener measure that governs g-space Brownian-
motion paths.! Since the formal “measures” of quantum mechanical path integrals are not countably
additive it has been basically necessary to resort to limiting procedures (e.g., lattice-space formula-
tions and subsequent limits) to define the path integral. In this Letter we indicate, for a certain class
of dynamical systems and in a projection sense made clear below, that quantum mechanical path inte-
grals involving genuine measures do in fact exist.

The basic idea in our approach is to exploit the overcompleteness inherent in the usual coherent
states. Linear dependences among the coherent states imply ambiguities in the integral kernels that
represent operators, or, stated otherwise, that an equivalence class of kernels corresponds to the
same operator. In this Letter we observe that within the equivalence class corresponding to the quan-
tum mechanical evolution operator for driven harmonic oscillators there exist integral kernels that
admit representations as genuine Wiener integrals over phase space. Other dynamical systems formal-
ly follow by integration or equivalently by functional differentiation involving the driving function. After
outlining the well-founded mathematical formulation of our quantum mechanical path integral, we also
give a formal statement of our main result.

Cohevent-state properties,—Coherent states are typically defined as (h=1)

|6, )=e 097e0]0), ®

for all real p and ¢, in terms of canonical Heisenberg operators @ and P, and the normalized ground
state |0) of a harmonic oscillator of unit angular frequency. Such states are complete in the sense that

the unit operator I admits the resolution
1=[1p, 2)<p, ql (ap dg/2) (2)
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when integrated over all phase space; in fact they are overcomplete, the nonvanishing overlap of two
such states,

<P2; ‘I2|P1; Q1>=eXp{%i(Q2P1 —-Pad) — % [ (pg=p)?+(g, — ‘h)z] }’ (3)

being a reflection of that overcompleteness.?
Let B be an arbitrary, bounded (for convenience) operator, and consider the expression

par @2 Blpy av) = J<pa a1p”s a”) K5 (p”, a0, @) p", @' | b1, @) (ap" dg”/27)(dp" dq’/27). (4)

Here X is an integral kernel that leads to the left-hand side for arbitrary coherent states. One suit-
able integral kernel is always given by

xs(pu,qil;pl,ql)=<p//’qn]Blp/,qr>, (5)

but because of the overcompleteness of the coherent states there are infinitely many other linearly in-
dependent integral kernels & that also fulfill (4) for a given operator B.?2 All such integral kernels
X lie in an equivalence class labeled by the operator B. A generic integral kernel in this equivalence
class is conveniently denoted by {p”,q”|B|p’;q")gc.

Driven havmonic oscillatoy.—Let

t)=z0(P?+Q -1) +s(1)Q, (6)

which for ¢ =1 is a harmonic-oscillator Hamiltonian with unit angular frequency driven by an external
c-number function s. The evolution operator for such a dynamical system is U =7 exp|-1i f Je(t)dat ],
where T is the usual time-ordering operator. Here and in all expressions that follow, all unspecified
time integrations extend from ¢’ to ¢” where —» <¢’<t”<», If we choose B="U, then the expression

b g t"|pah 1 )=p",q" | Texpl-i [3dt)at]|p’,q") (7)

represents the propagator expressed in terms of coherent-state matrix elements. This expression has
the customary formal path-integral representation® given for the Hamiltonian (6) by

<P”, qu, tlllpl, q/, t/)
= fexpG [ {2lp()d(¢) —aq(t)B (1)) = sl p*(t) +q*(8)] = s(t)q(t)} a)[L.dp ¢ )dg ¢), (8)

where N is a formal normalization constant.

The study of the Hamiltonian (6) and its formal path integral (8) can serve as the starting point for
alternative dynamical systems. As one example, we may simply choose a=0. As another example,
let p(t) =w ™2 p(¢), q(t) = w2q(t), s(t)~w "*(t), and choose & =w; then (8) represents the propaga-
tor for a driven oscillator of angular frequency w. Note for the coherent-state path-integral formula-
tion that the formal measure in (8) is invariant under such a transformation.® Additionally, as a stan-
dard trick, we may integrate (8) over some distribution of s paths thereby converting (8) into an ex-
pression for a more general potential, at least in a formal manner.

Equivalence-class propagator.—We now assert that we can write an element of the equivalence class
of the evolution operator for the Hamiltonian (6) in the following form?*:

prya"st"p'y 'y t)ec =2mexpl 3(¢” = )] [ exp(J {(4i+a)[p(t)d () = g(Dp(8)] = sali + a)|p(t) +¢%(1) ]
=s()[(E+)q(t) +5 (£) ] = 5% ) }atydp, 2" " (p)du, " < (g). ©))

In this expression u,* "'x', where either x =p or x =q, is a standard Wiener measure on continuous
paths pinned so that at ¢/, x(¢')=x’, and at t”, x(¢”) =x". In units where ¢'=0 and ¢”= 7T then for 0 <¢
<T,{x@t),=T"Ytx” +(T — t)x'], while for O<u<wv<T the connected (c) covariance function reads
@)@, =T @ -v), where {(-++)), = j(- .o )duw""""(x)/fduw"""" (x) and fdp.w”" 2 x) = 2pT) V2
x exp[- 3(x” —x")?-T]. Since the Wiener measure is a Gaussian measure all correlation functions fol-
low from the mean and covariance.®

While (9) has been written in physicists’ notation it is in fact mathematically well defined. To see
this we need only interpret the terms (pq — gp)dt and sp dt in the fashion p dg —q dp and sdp, respective-
ly. As such all the terms in the indicated integrand in (9) are well-defined stochastic integrals, this
being the case even if s itself is an element of a stochastic process for which the expectation of fsz(t)dt
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is finite.® Since p and ¢ (and s too if so regarded) are independent stochastic variables then all pre-
scriptions (It, Stratonovich, etc.) for defining the stochastic integrals are equivalent.” Consequently,
(9) represents a mathematically well-defined path integral with a genuine measure for an element of
the equivalence class of the quantum mechanical propagator.

The evaluation of (9) is straightforward and is given by

by t"lp g’y t0ec =A exp(3ilq"ps’ = p"qa")
—1B{lq” = qo'+ [ sinalt” —t)s(t)dt |2+ p” = po’ + [ cosa(t” - Hs(t)dt |2}
-1 Jlcosa(t” —t)g" +cosalt —t")q' —sina(t” — t)p” +sina(t - t)p '] s(Hat
+1i [[dt,dt, sinalt, - 1,| s(t,)s(t) , (10)
where g,'=q’cosa(t” —t') +p'sina(t” = '), po'=—q'sina(t” —t') +p’ cosa(t” ~ t'), and
A={1-exp[-(t"-¢)]}"", B=coth[3(t"-¢)]. (11)

When the kernel (10) is inserted into (4) the result is an expression for the correct propagator (7),
where the functional form of the correct propagator is also given by (10), the only change being that
A=B=1, Observe then from (11) that as the time interval ¢” —¢’ becomes arbitrarily large the equiva-
lence-class propagator (10) actually converges to the correct propagator without any need for projec-
tion via Eq. (4)!

The preceding analysis holds for any value of o, but now let us assume that o # 0 and for convenience
that o =1. We can then recast (9) into an alternative, equivalent expression by incorporating the fac-
tor 3(p®+¢?) into the measure, changing the standard Wiener measure to an associated Ornstein-Uhlen-
beck measure.! Thus (9) may be rewritten as

b"ya",t"|p' ', t' dec=2mexpl X" —t)] [ exp( [ {(2i + D[p(t)d(£) = q(t)p(£)] - % [p*(t) +4%(t) ]
—s(O)[G+1)q(t) +p(t) ] = 3s%(t) }at Ydpou® " ** (P)duou® ¥ (g) . (12)

Here Hou"""", where either x =p or x =¢, is an Ornstein-Uhlenbeck measure on continuous paths
pinned so that at #/, x(¢')=x’, and at ¢”, x(¢”)=x". In units where ¢'=0 and ¢"=T then for 0 <S¢ <T

Z(t)ou=(1-e2T) e (T-D(1 —e2hx " +e~t (1 = 2(T=t))x1 ], (13)
while for 0 s sov < T the connected covariance function reads
(x(v)x(u»OUc ___%e—(v—u) - %(1 _e—ZT)—l(e—v-y +e2T+vtu _ ,=2T+u-u _e—2T+u-u) , (14)
where ((+++))oy= J (- Vdpou*" ')/ [ dpou*” *(x) and
. 27
jd'uoux”,xl(x) =7T_1/2(1 _e'ZT)'l/Ze T /2 exp [_(1 _e—ZT)-l <l_+§__ (x/2 +x ”2) - zx/xne-T>:] . (15)

Since the Ornstein-Uhlenbeck measure is a Gaussian measure all correlation functions follow from
(13) and (14). For T=¢"-¢' <1 these relations reduce to those given above for the Wiener measure.®

If we specialize to p”=¢”=p’'=¢’=0 and pass to the limit ” — ©and ¢’ -~ — « then it follows from (11)
and (12), for all square-integrable s, that

(0| Texp{—i | [ HP>+@*-1) +s()QJat}|0)
=<0|Texpl—i];z s(t)Q(t)dt ] 10)
= lim 2mexp{-} [[s%(¢) - 1]dt} [exp(3i+Dp(t)d ()= qt)p (£)] = % [p*(t) +q%(t) ]

t" 5w
tt—> —

=s@)[(i+1)q(2) +p (¢) ] }dt Yapou ™ (p)dpou®(g) . (16)

In this expression the second form corresponds to the interaction representation where Q(¢)= @cost
+Psint. Since the time interval has diverged the limit of path integrals in (16) actually converges to
the desired ground-state expectation value, the evaluation of which is given by the well-known expres-
sion exp[-3 f: [ s@)s@e=1"=l av au].
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Formal statement.—In order to gain insight and help interpret the integrand in our main result (9),
it is instructive to recast this expression in a formal manner as [cf. (8)]

brya”, t"|p’, a'y tec =fnfffe "exp{—%j[(ﬁ + 2%5 )2 +(q’ - zfﬂdt } IL, ap(t)aqtt) , (17)

where 9 is a formal normalization constant, and
I= [{4p()a () =a()p(e)] - H(p(t), alt), t )} at , (18)
H=H(p(t), q(t), ) = za[p*(t) +¢*(t) | +s(t)q(t) . (19)

Thus we see that the phase of the integrand is given as usual by the classical action, while the drift
terms in the measure are those dictated by the classical equations of motion. Note that the total weight
of the measure, integrated over the final values as well, is independent of the classical Hamiltonian
H, implying that the measure just redistributes the weight when H =0 without changing its total value.
It is interesting to speculate if (17) may hold true for more general Hamiltonians than those given in
(19).

We emphasize that by exploiting the overcompleteness of the coherent states we have been able to
formulate quantum mechanical path integrals as integrals involving genuine (countably additive) meas-
ures. The principal price needed to accomplish this result is the appearance of a different “action”
expression than the usual one. Our method has been illustrated for driven harmonic oscillators which
can be extended by integration over the external source to more general potentials. Apparently the
present formulation cannot rigorously lead to genuine measures for general local potentials when inte-
grated over external sources, but it is hoped that this aspect can be rectified by a more elaborate
analysis of the type outlined here that exploits other elements of the equivalence class of the evolution
operator. A detailed discussion and derivation of the path-integral expressions given in this Letter
will be presented elsewhere.®
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