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Magnetic Flux, Angular Momentum, and Statistics
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It is demonstrated that the orbital angular momentum l of a particle of charge q orbit-
ing around a tube with magnetic flux 4 is quantized in units l =integer —qC'/2r. A very
simple physical argument for this is presented, and applied to understand the Dirac quan-
tization condition and the charge-spin relation for particles bound to magnetic monopoles.
The unusual statistics of flux-tube-charged-particle composites is discussed.

PACS numbers: 14.80.Hv, 03.65.Bz

The unusual angular momentum of magnetic-
monopole- charged-particle composites has been
recognized for a long time' and has recently been
demonstrated also in the framework of unified
gauge theories. ' The main result is that com-
posites satisfying the Dirac quantization condi-
tiongq/4w =-,'+ integer (g is the magnetic charge
and q is the electric charge) have angular mo-
mentum shifted by & from the naive value—e.g. ,
composites of a spinless monopole and a scalar
particle satisfying the Dirac equation will have J
= integer+ 2. It has also been shown, surprising-
ly recently, that the statistics of these composites
is effectively modified so as to restore the usual
spin-statistics connection. '

Although in three spatial dimensions the angu-
lar momentum can only be integer or half integer,
in an effectively two-dimensional situation (e.g. ,
in the presence of a string configuration) more
possibilities open up, both for the spin and for
the statistics. Also, the lower dimensional sys-
tem should be simpler to understand. It there-
fore may be interesting to reexamine these ques-
tions in the two-dimensional context. This note
presents the results of such a reexamination. As
we shall see interesting phenomena do occur in the
two-dimensional case; furthermore it becomes
possible, following a suggestion of Johnson, to
understand all the phenomena (in both two and
three dimensions) in an extremely simple phys-
ical way. '

(A) Imagine a particle of charge q which orbits
around, but does not penetrate, a solenoid run-
ning along the z axis. When no current flows
through the solenoid the orbital angular momen-
tum is of course quantized in units /, = integer.
If a current is slowly turned on, the charged
particle will. feel an electric field E(r) = —[2w(x'
+y2)] 'zxr4 according to Faraday's law, where
4 is the flux through the solenoid. This gives the
change in angular momentum

l, =[rx(qE)] = (q/2w)4. (&)

The total change in angular momentum therefore
depends only on the final flux, ill, = —qC/2w. The
quantized angular momenta are correspondingly
displaced, and so we conclude that when a flux 4
runs through the solenoid, the angular momentum
l, is quantized in units

l, = integer —qC/2w.

(B) The same conclusion may be reached more
formally as follows. Although the magnetic field
vanishes outside the solenoid of course the po-
tential does not. Rotations around the z axis,
i.e. , changes in the azimuthal angle q, are gen-
erated by the covariant angular momentum l,
= —i S~ —qA ~. In a nonsingular gauge, A ~

= 4 /2w

and the azimuthal dependence of the electron
wave function is („~e'"",n = integer for con-
tinuity. Then l, („=(n —q4/2w)(„, in agreement
with the previous conclusion.

(C) Finally one may eliminate the potential out-
side the solenoid altogether by a singul. ar gauge
transformation from (B), namely, A' =A -VA
with A =C p/2w. Thi. s is singular because p is a
multivalued function. The charged-particle wave
function g now obeys a free Schrodinger equation
but with an unusual boundary condition that g'(y
+2w)=e " P'(q&) following from the gauge trans-
formation A. This boundary condition requires
g'(p) cc exp[i (integer -qC/2w)p]. Now there is no
vector potential, and the angular momentum is
identified as usual, so that l, = integer -q4/2w.

If we interchange flux-tube- charged-particl. e
composites we will have, in addition to the usual
factors, a phase factor appearing in all gauge-
invariant observables. This is because, in the
motion depicted in Fig. 1, each composite must
be covariantly transported in the gauge potential
of the other. The resulting phase is simply e"
(sinceA ~=4/2w).

If l, =integer —qC/2w is an integer, the phase
factor is unity and the statistics is normal (e.g. ,
if the composite is a flux tube plus electron it
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FIG. l. Interchange of two flux-tube-particle com-
posites by a rotation.

obeys Fermi statistics). If l, =integer —q4/2m
is half an odd integer then the normal statistics
is reversed. In intermediate cases, the compos-
ites cannot be described as fermions nor as
bosons. In a scattering experiment the direct
and exchange terms will interfere with a coef-
ficient cos(q4). Notice that in this case the pos-
sible ambiguity of the sign of the phase is unim-
portant (i.e. , we can reverse the direction in
Fig. 1). This is not true for assemblages of more
than two of these particles, which are therefore
complicated to describe.

Some applications of the above discussions are
now presented.

(a) Superconducting vortex For a un.—it vortex
in a superconductor the magnetic flux is quan-
tized as 4 = 2w/2e, where e is the electron charge
(and 2e the charge of the condensate). Therefore
the orbital. angular momentum of an electron
around a unit vortex is ~+ integer and the com-
posite is a boson.

(b) Dirac condition. —We can repeat the Fara-
day law argument (A) above as we imagine turn-
ing on a magnetic monopole (Fig. 2). For a
charged particle orbiting inf initesimally above
the pole the flux is g/2 while for a particle in-
finitesimally below it is -g/2. The correspond-
ing shifts in angular momentum are l, +gq/4m;
the allowed l, values are integer+gq/4w. For
these two spectra of l, values to agree one must
have gq/4m =-, + integer, which is the Dirac quanti-
zation condition.

(c) Charge spin ~elation A-s a, consequence of.—
this argument when gq/4m is half odd integer the
angular momentum spectrum has been shifted by
2 unit. I find this explanation of the relationship
between the Dirac condition and the spin shift of

FIG. 2. (a) Sign of magnetic flux depends on whether
orbit is infinitesimally above or below the pole. (b) Spec-
trum of angular momenta moves up or down as the flux
is turned on. They can meet after each has shifted by

2 unit, explaining the Dirac quantization condition and

the unusual spin of composites.

2 unit, in terms of the l, spectrum meeting itself
after up and down shifts, very appealing.

(d) Gauge theory strings. —Consider a U(1)
gauge theory coupled to a complex Higgs field h

of charge nq and another matter field with the
fundamental charge q. There are topologically
stable vortices or strings where the order param-
eter has the asymptotic behavior

As p varies the local values of the order param-
eter are related by a gauge rotation through p/n,
since for the charge-n field h we have h-e'"'~ "'h

under such a rotation. Arguments as above show
that particles of charge q orbiting around such a
string have orbital angular momentum l, = 1/n
+ integer.

This sort of setup can occur in non-Abelian
models used in attempts to unify strong, elec-
tromagnetic, and weak interactions. As a toy
example consider an SU(2) gauge theory broken
completely by a three-index symmetric tensor
(h, ;„),=v5, ,5, , 5». Actually, it is important for
us that more precisely SU(2) is broken to Z(3),
the Z(3) group being generated by the transforma-
tion exp(4mtI, ). We can have a stable string be-
cause if the order parameter has the asymptotic
behavior

then covariant transport from q = 0 to p = 2w gen-
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crates a nontrivial Z(3) transformation which
cannot be continuously deformed away. Bound
states of an SU(2) vector matter field in the pres-
ence of this string will have l, =—', +integer.

(e) Thought exPeriment. T—he essentially cias-
sical nature of all these effects (given quantized
angular momentum for a free particle), and the
measurability of the fractional angular momentum,
is brought out by the following simple thought ex-
periment. Consider a long but finite solenoid
along the z axis and a charged electron coming up
at it from below. As the particle moves up it will
feel a torque from the fringing fields, which of
course will generate the angular momentum -qC /
2m as before. The solenoid will rotate to com-
pensate, and the rate of rotation could be used to
measure l, .

(f) Dyon charge —T.here is a striking formal
analogy between the fractional angular momentum
l, = integer-qC/2w and the electric charge in
dyons in a 8 vacuum, ' q/e = integer -g8/2s, where
g is the strength of the magnetic pole in units of
the Dirac pole 2 /se. Mathematically, this comes
about as follows. The above arguments, in par-
ticular (B), can be summarized in the statement
that in a background of flux 4 (in the presence of
a magnetic charge g) the rotational symmetry re-
quires that rotation in physical space through
angle p must be accompanied by a gauge rotation
through -+4/2s (-pg/2s). The 8 vacuum is de-

fined by the analogous requirement that rotations
in gauge space through q should be accompanied
by multipbcation with the phase —yg8/2m, which
can be thought of as a rotation in magnetic gauge
space by -q8/2s. This intimate relation among
rotations in physical, ordinary gauge, and mag-
netic gauge spaces gives the way to understand-
ing dyon statistics and is further explored in the
accompanying note.
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Remarks on Dyons
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Some issues in dyon theory are discussed: retention of the charge e8/2n in the chiral
limit, the spin-statistics connection, and the indefiniteness of anomalous charges.

PACS numbers: 14.80.Hv

In a profound paper Witten' demonstrated that
in a 0 vacuum magnetic poles will necessarily be
dyons, with charge e8/2m +integer for the unit
pole. This result raises several apparent puz-
zles, and an examination of its demonstration in-
dicates that in theories with fermions the dyons
will have a rich internal structure.

It is widely believed that all effects of the 0 pa-
rameter disappear when there is an appropriate
anomalous chiral symmetry in the problem. In-

deed the anomaly equation ep jp ~ E'
p p Ep E

p
in-

dicates, according to Noether's theorem, that
we can add or subtract terms proportional to

F„,Fp
from the Lagrangian of the theory by

making a, chiral rotation. Since e 8/16m' is de-
fined as the coefficient of E'p

p Fp F
p

in the La-
grangian, this would seem to indicate that all the
theories with different values of 0 are physically
equivalent, related simply by redefinition of the
fermion fields. This argument poses a puzzle:
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