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A Monte Carlo study of a system of interacting dislocation vectors reveals the possibil-
ity of two types of phase transitions. For a system with a large dislocation core energy,
unbinding of dislocation pairs causes a continuous phase transition. With a small core
energy a first-order transition is produced by formation of grain boundaries. This pos-
sibly resolves the discrepancy between the Kosterlitz- Thouless theory and previous com-
puter experiments of atomistic systems.
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Among the various phase transitions taking
place in two dimensions, melting is one of the
still unresolved problems. On the one hand the
renormalization method of Kosterlitz and Thou-
less' (KT) predicts a continuous phase transition
due to dislocation unbinding, and its extension by
Halperin and Nelson' and by Young' (HNY) pre-
dicts two continuous phase transitions due to dis-
location and disclination unbinding. On the other
hand previous computer experiments' ' on various
atomistic systems indicate the melting transition
to be first order.

The renormalization-group methods are calcu-
lating the free energy by the linear elasticity the-
ory with additional dislocations, "whereas atomis-
tic systems contain furthermore effects such as
anharmonicities, vacancies, and so on. If these
neglected effects are important, the dislocation
model is not sufficient to describe the melting
transition. Recently, however, Chui" has pointed
out that the first-order transition is possible
even in a dislocation model if one considers the
grain boundary excitation. "

In this paper I perform Monte Carlo simula-
tions of dislocation vector systems with long-
range interactions and a core energy, and investi-
gate the order of phase transition taking place

there. The merit of simulating the dislocation
vector system is that one can control the core en-
ergy directly.

The main finding is that both types of phase
transition are possible depending on the core en-
ergy: a continuous phase transition for a large
core energy and a first-order transition for a
small core energy. The continuous transition is
due to dislocation unbinding and the formation of
free dislocations, as predicted by KT. The first-
order transition is due to the nucleation of loops
of grain boundaries, in agreement with computer
experiments and Chui's prediction. Thus the dis-
agreement between theories and experiments
seems to be a consequence of differences in core
energies.

I shall now explain details of the investigation.
In the ground state, atoms order in a close-
packed structure, i.e., triangular lattice in two
dimensions. At high temperatures defects such
as dislocations are possible as well as phonon ex-
eitations. Burgers vectors b ean be in six direc-
tions; (+a„0) and (+a,/2, + v 3a,/2), where a, is
the lattice parameter. Instead of assuming dis-
locations with core radius a, I assume here that
dislocations can be situated only on a triangular
mesh site with lattice parameter 2a. I also as-
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sume a "neutrality" condition gb;=0. The inter-
action may be written as

& =- —Z Z &;"&,'I'))("'(r( —r;)
i j&i

consists of two parts:

I'))("' (r) =5"'G.(r) +U."(r),

with the orientation-independent term

(2)

Here the coupling constant 4 is given in terms of
the Lame coefficients & and p by J=)u(p+&)/)) (2p
+X) and the Einstein convention of summation for
components n, P =x,y is used. The interaction

""'=~SLM" 2
~"'"q)"-'"""

3LMa 2 q
(3)

with a constant e, related to the core energy, and
the orientation-dependent term

rr„"'(r) =- ~3~~, 2 +(8 G, '(t)), G,(q))()-e"').

G, (q) is the triangular-lattice Green's function,

G, (q) = 3/[3 —cos2q„a —eos(q„+ v Sq,)a —cos(q„—~3q, )a]. (5)

The Fourier summation runs over the coordinates q„=2ml/La (l =0, .. . , L —1) and q, =2mm/v SMa (m=0,
. .. ,M-1), and two singular points (q„,q, ) = (0, 0) and (w/a, ((/WSa) are excluded from the summation.
By numerical calculation of the interation V)),(r), the asymptotic behavior of G„and U„ for a large sys-
tem is found to be G„(r)-Inr/a+1. 13+e» and U„(r)-—,'5" rr -/r'. In the thermodynamic limit
the Hamiltonian (1) therefore reduces to"

=-$JQ Q j5; ~ b,. lnr;, /a —(5; ~ r;, ) (b, ~ r;, )/r, ,'j +E,gb,.', (6)

with a core energy E, = ~&(1.63 + e,). Two typical
cases of core energies are considered; E, =0.824
(e, =0) and E, =0.57J (e, =-0.5).

The Monte Carlo procedures are similar to the
previous simulation of scalar Coulomb system";
the creation or annihilation of a nearest-neighbor
(nn) dislocation pair, as well as the diffusion of
dislocations is permitted. Two system sizes,
LxM=38x22 or 76x44, are considered, and
normally 2000 to 4000 Monte Carlo steps (MCS)
per nn bond are performed at each temperature.

I first describe results for the system with a
larger core energy, &, =0.82K The reduced en-
ergy per mesh site E =(X)/NJa, ' and the specific
heat C = ((&') —(&)')/NT' are shown in Fig. 1.
Here N is total number of mesh sites N =LM/2,
and the Boltzmann constant k B is set equal to
unity. No discontinuity nor hysteresis is found.
The specific heat has a sharp maximum at a re-
duced temperature l =T/Ja, ' near 0.25. At low

temperatures only a few dislocations are created
and almost all of them are forming bound pairs.
The dislocation density is found to follow the
Arrhenius law n =n, exp(- ~/l) for temperatures
t 40.22, with an activation energy ~ correspond-
ing to the minimum formation energy of a nn
bound pair. At high temperatures one finds many
dislocations as shown in Fig. 2. The Arrhenius
law does not hold any more, since there are also
many isolated dislocations. These isolated dis-

~ locations, however, do not destroy the global
orientational order of the underlying crystal, and
thus the system may be in a hexatic phase de-
scribed by HNY. More precisely one expects an
orientational stiffness &» defined by'

T/K„= lim ([q ~ 5(q)][q b(- q)])/q'MLa',
0

to be finite in a hexatic phase, whereas K„ is in-
finite in a solid and zero in a liquid. In the simu-
lation, the value of the correlation at the shortest
wave vector (q- 2)(/76a) is taken to be T/K„. It
is found to be less than 10 at t 0.23, increas-
ing from -0.004 at t =0.24 to -0.03 at t =0.27.
This warrants the transition to be from the solid
to the hexatic phase. By calculating a renormal-
ized coupling K„ from the formulas (2.17) and
(2.36) of Nelson and Halperin, ' one finds a sharp
decrease of K& around the value K~ =16m at t
- 0.22 as is shown in Fig. 1. This value K~ =16m

at the transition point agrees with the universal
value predicted by KT. Consequently the ob-
served continuous phase transition is well de-
scribed by the KT or HNY theory.

On the other hand, since the KT theory relies
on the fugacity [-exp(-E, /T)] expansion, sys-
tems with small core energies could shown dif-
ferent behavior. Now I will discuss the results
of studies on a system with a small core energy,
E, =0.57J. The energy and the specific-heat
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FIG. 2. Snap-shot configurations of dislocation vec-
tors with E, = 0.82J at high temperaturet = 0.30 for a
system size N = 418.
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FIG. l. Energy E, specific heat C, and renormalized
coupling Kz as a function of reduced temperature t for
systems with a large core energy R, = 0.82J. Thin
lines are just for the guide to the eyes. The unrenor-
malized coupling K= 4&/t and the universal value Kz
= 16m are shown by broken lines.
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curves in Fig. 3 show a large discontinuity at t
=0.14. Hysteresis is also found and the super-
cooled liquid stays metastable at low tempera-
tures t =0.12-0.135. Configurations of the low-
temperature solid phase are similar to the corre-
sponding configuration for E, =0.824. One finds
bound pairs and the dislocation density is found
to be well described by the Arrhenius law. One
difference is that in the course of simulation here
loops of dislocations are created and destroyed.
In fact, at high temperatures, configurations such
as those in Fig. 4 have long lines of dislocations
or grain boundaries, surrounding many crystal
regions. Because of this entangled structure of
grain boundaries, the orientational order of the
underlying crystal may be globally destroyed. In
fact the inverse of the stiffness T/K„ is found to
jump from a value less than 10 ' at t - 0.135 to- 0.3+ 0.1 at t =0.14 or 0.15. Despite the large
fluctuation in 1'/K„, the instability condition, '
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FIG. 3. Energy F. and specific heat C for systems
with a small core energy E, = 0.57J. Thin lines are
for the guide to the eyes. At t = 0.14 the lower branch
becomes unstable and relaxes to the arrowed direction.
The upper branch becomes metastable below t ( 0.14
and fluctuations become very large as is shown by bars
at t = 0.12 and 0.13.
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FIG. 4. Snap-shot configurations of dislocation vec-
tors with I., = 0.57J at a high temperature t = 0.15.

FIG. 5. Nucleation and growth of loops of dislocation
vectors on melting at t = 0.14.

T/K„& n/72, to form a true liquid without orien-
tational order is satisfied at t ~0.14. The system
now performs a solid-to-liquid transition. Simi-
lar loops of grain boundaries were also found in
previous computer experiments of atomistic sys-
tems, and these loops may be the common and
responsible feature of the first-order melting.
Figure 5 shows grain boundary loops formed in
the intermediate stage of melting at t =0.14.
These loops grow in size and also produce other
loops, and they finally eat into the crystal region
shown in the upper part of Fig. 5.

The above investigation indicates the importance
of the core energy in determining the order of the
phase transition. The change in the order of the
melting transition is expected at a core energy
somewhere between 0.57' and 0.82~, which con-
tradicts the Chui prediction of the multicritical
point at E, =0.924. More detailed investigation,
for example, by the real-space renormalization
method seems necessary. In atomic systems, as
far as I know, there is only one calculation of the
core energy, namely in the one-component plas-
ma." The value obtained, E,= 1.22~, seems to
support a continuous phase transition, although
there is still no final agreement on the order of
phase transitions among various computer simu-
lations. ' ~' It seems therefore urgent to calculate
core energies for other atomic systems to classi-
fy the order of phase transitions.
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