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Reduction of Dynamical Degrees of Freedom in the Large-N Gauge Theory
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It is pointed out that the factorization of disconnected Wilson loop amplitudes implies a
major reduction in the dynamical degrees of freedom in the large-N limit of lattice gauge
theory; the original model may be replaced by a much simpler one (d is the space-time
dimensionality),

Z = II fd Up exp(P Z tr UpU„U~~U„t).

Thus the field theory may be reduced to an integration over a Gnite number of matrices
in large-N limit.

PACS numbers: 11.15.Ha, 1$.30.Ly

Currently the lattice formulation of gauge theo-
ry' appears to provide the most systematic ap-
proach to testing the idea of quark confinement.
Unfortunately lattice gauge models seem to
possess an extraordinary complexity and have
so far defied attempts at their analytic solutions.
Here one may hope that in the limit of large N a
considerable simplification might take place in
U(N) [or SU(N)] gauge theory because of the
dominance of planar surfaces. It has been pointed~

out some time ago' that the planar approximation
implies the factorization of Wilson loop ampli-
tudes for disconnected loops and this may give
us a clue to the understanding of the properties
of large-N gauge models.

In this paper we shall show that in fact the
large-N factorization implies a remarkable sim-
plification in the structure of the theory; the
standard U(N) gauge theory defined by the parti-
tion function

d

Z=gg fdU„„exp{/+ g tr U„„U„„„U„„„tU,„tj

can be effectively replaced by a much simpler
model,

d

Z„=g J dUp exp(P Q tr UpUvUp U„j (2)
W(C) =(tr(U„„U„,„,U„,„,„.".U„..)), (3)

one considers an amplitude
in the limit N —~ with A. =N/p kept fixed. Here
U„„is an N xN unitary matrix lying on a link
(x, p) which connects lattice sites x and x+ p,.
denotes a unit vector in the p. direction and d is
the space-time dimensionality. Our model is ob-
tained from the standard one by identifying all
variables on the links in the same direction,
U„„=U„. Only global invariance is left in the
theory and we shall call it the reduced model.

Corresponding to aWilson loop amplitude in

W„(C) = (tr(U„U„U." U. )), (4)

where expectation values in Eqs. (3) and (4) are
taken with respect to the weights in Eqs. (1) and

(2), respectively. Here the point is that to a
given sequence of indices (p, v, a, . . . , o) one
may associate a unique (modulo overall transla-
tion) contour connecting lattice sites (x, x+ p,,
x + p, + v, x + p, + v + a, . .. , x + p. + v +. ..+ c) in
succession and vice versa and we have the identi-
fication

+e (pp &y ap ~ ~ ~
p

&) (x~x+Qqx+ p+vqx+ Q+v+aq. . . «x+ p+v+a+. . .+c). (5)

In order for the contour to be closed, x =x+ p+ v

+n. . . +0; one requires that each direction p
= I, . . . , d be traversed in opposite directions
the same number of times and thus there are as
many U~'s as U~ 's in Eq. (4) for all p = 1, . . . , d.
In the following we shall demonstrate that in the
large-N limit our Wilson loop amplitudes, Eq.

(4), obey the same infinite set of identities, the
so-called Schwinger-Dyson equations, as in the
standard model under the identification Eq. (5).
Hence if these identities uniquely specify the
theory and in particular determine the values of
Wilson loop amplitudes (which we assume to be
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the case), we conclude that W„(C) = W(C) and the
theory, Eq. (1), is equivalent to its simpler ver-
sion, Eq. (2).

Unfortunately our reduced model appears as yet
too complicated to be solved exactly except for
the extreme case of 0= 2 where we simply re-
cover the results of Gross and Witten' and Wadia. '

Let us start our discussions by deriving Sch-
winger-Dyson equations in the U(N) gauge theory. '

We consider an expression

(tr(U, p'''Uy-v, PT Uy ~ nUy+n, a
'' x-D, O))i

where T' ( j=1,. . . , N') denotes a generator of
the I ie algebra of U(N). By making an infinites-
imal change of variable

U, -(1+ieT') U,

and using the invariance of the integration meas-
ure we obtain

(tr(U„p ~ U, „„T'T'U~ „U, + s U. . .))

+N/y(U„„U, „,T'U, U+ 8 U, , )tr(T' U, ~U+n pU„,p U, p ))

-N/X(tr(U, „.U, „„T'U„, U„,g. -.U. ..)tr(U, ~, U..., U, .~p U, ,

After summing over j and making use of the formulas

we arrive at the result

N(tr II U ) +—P (tr II U, ) ——g (tr II U,. ) = 0,N

Ec
'

A p~n inc ~
'

A p~n iecP P

where contours are defined by

C =(x,x+ v, , .. . , y —v, y, y+u, y+u+P, . . . , x —o, x),

Cp =(x x+P ~ ~ ~ y —v y y+u y+u+0 y+9 y y+u+p, ~ ~ ~, x -&,x),
Cz"=(x,x+p, . . . , y —v, y, y+p, y+p+u, y+u, y+u+p . . . x —o x).

(10)

When the link (y, u) occurs more than once in the original contour C, we obtain additional terms in
Eqs. (8) and (10). For instance, in the case of a contour

C = (x, x + p, . .. , y —v~ y, y + u, y + u + P, . .. , y —
p~ y + u~ y + u + 5, . .. , x —(7, x),

where the link (y, u) is traversed twice in the same direction, we obtain a term

-&(tr II U;)(tr II U, )&
i E.Cg

with

~C= ( ,yy +,uy + u +,P~ ~ ~, y - 'Y, y),

C2 =(yq y + u y + u + ~~. .. q
x —o'~xq x + v.q. . . y —v y)

in the right-hand side of Eqs. (8) and (10). These terms correspond to 5 functions in the right-hand
side of Schwinger-Dyson equations in the continuum field theory and hence we call them source terms
hereafter. We note that source terms always have the structure of the product of disconnected loops.

Now we discuss Schwinger-Dyson equations in the reduced model. When we repeat the derivation of
these identities, we find identical equations except that there are now extra source terms which arise
because some of the link variables are identified in our model. For instance, in the case of a contour

C =(x,x+ p, , . . . , y- v, y, y+u, y+u+P, . . . , z -y, z, z+u, z+u+6, . . . , x —vx)

there appear links (y, u) and (z, u). In the reduced model the same variable U„ is assigned to these
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links even for y gz. Thus we create an additional source term,

W(C„C,) = (tr(U. U, U, )tr(U. U, .U.U„. .U,)).
Here the sequences (n, P, . . . , y) and (n, 5, . . . , v, p, . . . , v) correspond to open paths

C, =(y, y+a, y+o. +P, . . . , z -y, z)

and

C, = (z, z + n, z + o. + 5, ... , x —0, z, z + p, .. . , y —p, y),

respectively.
Thus the reduced model differs from the original one in general. In the limit of large N, however,

we have the factorization property (the reduced model has only global gauge invariance; however, it
is well known that the factorization holds also in matrix spin models in the large-N limit),

W(C„C,) =(trU U8 ~ ~ ~ U&)(trU U ~ U.U„" U„)+O(N').

Now we notice that since C, and C, are open paths
for y gz, there exists at least one direction p for
which U~ and U~~ appear different numbers of
times in both of the sequences (u, P, . . . , y) and

(o., 5, . . . , v, p,, . . . , v). Then, making use of the
fact that the measure and the action are invariant
under the phase transformation U&-e' Uz, we
find

(tr U„Ug Uy)

= (tr U~ U( . U~U( ~ ~ U, ) = 0. (15)
Therefore the contribution of the unwanted extra
source terms is down by 1/N' as compared with
the other terms in the Schwinger-Dyson equations
and hence may be ignored in the large-N limit
[correct source terms as in Eq. (12) are, of
course, kept intact]. Thus the Wilson loop ampli-
tudes in the reduced model obey the same set of
identities as in the standard model and must

!necessarily agree with the Wilson loop amplitudes
of the standard theory.

The equality of the free energy of the reduced
model, E„(A), and the free energy per unit vol-
ume of the standard model, E(A)/V, follows from
the equality of the Wilson loop amplitudes. In
fact the free energy is related to the internal en-
ergy E(z) as x'/NdE(X)/dh =E(x), and E(x) in
turn is related to the Wilson loop amplitudes for
elementary squares W(C =1), E(A) = Vd(d —1)W(C
= 1). On the other hand A'/N dE„(A)/. dA=E„(A.).
=d(d -1)W„(C =1). Hence E, =E/V in the large-
Ã limit.

It is easy to see that in the case of two dimen-
sions our model reproduces the known results. '
By introducing the 6 function in the group space
and its expansion in terms of characters, we
have

(16)

Z„= fdU, dU, exp[P(trU, U, U, ~ U~+trU Ui,
~

U, tU)2]= f Ud, Ud, Vd( 5VU, U, U, tU, t)exp[/(trV+trV )]
= J dVQ„[g, (V)/d„] exp[P(tr V+tr Vt)].

This is to be compared with the partition function
(per unit volume) of the standard theory,

Z = i d V exp [P(tr V+ tr V )].
In Eq. (16) g„ is the character of the irreducible
representation x of the group U(N) and d„denotes
the dimensionality of the representation. The
sum over r runs over all irreducible representa-
tions of U(N). When we define !~! to be the num-
ber of boxes in the Young tableau of the represen-
tation r, we have

d =Ni" i y (V) =(trV) (IS)

and hence

! Therefore the free energy of the model, E„(&)
1nZ„/NP, ag-rees with that of the standard theo-

ry in the large-N limit.
In this paper we have pointed out an exciting

possibility of a major reduction in the dynamical
degrees of freedom in the large-N limit of lattice
gauge theories. Our arguments were based upon
the following assumptions: (1) unique specifica-
tion of the theory by Schwinger-Dyson equations,
and (2) factorization of disconnected amplitudes
in the large 1V limit. In-the derivation of Eq. (15)
we also implicitly assumed (3) the absence of
spontaneous breakdown of the U(1) symmetry U~-e' U~. These assumptions are known to be
valid in perturbation theory and we expect them
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to hold for large values of A.. We have checked
explicitly the agreement of the free energy of
the standard and reduced models in lower orders
of perturbation theory in arbitrary dimensions
I up to (1/A)']. It is extremely important to check
if the equivalence of the models persists at small
values of A..

We are grateful to Professor E. Brdzin for his
critical remark on the original version of our
manuscript.

Note added. —After the submission of this paper
we received a preprint by G. Bhanot, U. Heller,
and H. Neuberger where some evidence for a
spontaneous breakdown of U(1) symmetry a.t small

A. is presented. We understand that M. Peskin
and K. Wilson have obtained similar results.
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Rates are calculated for the processes gg-ss and uu, dd-ss in highly excited quark-

gluon plasma. For temperature T ~ 160 MeV the str~~~eness abundance saturates during

the lifetime (- 10 ~ sec) of the plasma created in high-energy nuclear collisions. The
chemical equilibration time for gluons and light quarks is found to be less than 10 sec.

PACS numbers: 12.35.Ht, 21.65.+f

Given the present knowledge about the interac-
tions between constituents (quarks and gluons),
it appears almost unavoidable that, at sufficiently
high energy density caused by compression and/
or excitation, the individual hadrons dissolve in
a new phase consisting of almost-free quarks and

gluons. ' This quark-gluon plasma is a highly ex-
cited state of hadronic matter that occupies a
volume large as compared with all characteristic
length scales. Within this volume individual color
charges exist and propagate in the same manner
as they do inside elementary particles as de-
scribed, e.g. , within the Massachusetts Institute
of Technology (MlT) bag model. '

It is generally agreed that the best way to create
a quark-gluon plasma in the laboratory is with
collisions of heavy nuclei at sufficiently high ener-
gy. We investigate the abundance of strangeness
as function of the lifetime and excitation of the
plasma state. This investigation was motivated

by the observation that significant changes in rela-
tive and absolute abundance of strange particles,
such as A,' could serve as a probe for quark-
gluon plasma formation. Another interesting sig-
nature may be the possible creation of exotic

k)

a)

k2r

k)~~q

k2~~ q2

b)

FIG. 1. Lowest-order QCD diagrams for ss produc-
tion: (a) qq —ss, (b) gg ss.

multistrange hadrons. After identifying the-
strangeness-producing mechanisms we compute
the relevant rates as functions of the energy den-
sity ("temperature") of the plasma state and com-
pare them with those for light sc and d quarks.

In lowest order in perturbative QCD ss-quark
pairs can be created by annihilation of light quark-
antiquark pairs [Fig. 1(a)] and in collisions of two

gluons [Fig. 1(b)]. The averaged total cross sec-
tions for these processes were calculated by
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