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A description of the decay into the bulk of surface perturbations in a system at its crit-
ical point is presented. The description, justified by detailed renormalization-group cal-
culations, yields asymptotic order-parameter decay, z -(@-2+m)/ 2, along with power-law
behavior connected with surface exponents under suitable conditions. Comparison with
the phenomenological theories of Widom and of Fisher and de Gennes is also made.
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Because of enhanced surface exchange interac-
tions (or a surface magnetic field) a magnetic
material can have ordering on its surface above
the Curie temperature T,. As long as T >T, the
magnetization will decay exponentially to zero in

the bulk. Af the Curie temperature there is power-

law decay to zero with increasing distance into
the bulk material.

A similar situation exists in the case of a bi-
nary fluid mixture in coexistence with its vapor.
When the consolute point, at temperature T, is
approached from below (T'—7"), the meniscus
separating the coexisting fluid phases disappears
while the interface between the critically mixed
fluid and its noncritical vapor remains intact. A?
the consolute point the composition of the mixture
in the vapor phase relaxes exponentially with dis-
tance from the liquid-vapor interface to its bulk
value; in the liquid the decay to the critical com-
position is, once again, a power law.

This latter system has been analyzed within a
modified Cahn-Hilliard? (or mean-field) theory by
Widom.® While an exponent for the power-law de-
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cay to bulk behavior in the critical liquid is ob-
tained, Widom points out that mean-field theory,
modified or not, must be applied with caution
here. This is because the correlation length in
the critical liquid is infinite, and in general,
mean-field theory loses its validity as the corre-
lation length becomes large.

The challenge that must be met in the construc-
tion of a proper theory of the decay of surface
perturbations at the bulk critical point arises
from two aspects of the problem. First, as al-
ready noted, the bulk correlation length is in-
finite. The absence of an obvious length scale
complicates the incorporation of critical fluctua-
tions into a description of the spatial variation of
the order parameter.* Second, the surface per-
turbations cannot be treated via linear-response
theory. Such an approach leads immediately to
divergences. The problem is inherently non-
linear.

As it turns out we have been able to derive, in
a relatively transparent and useful form, a valid
theoretical description of the decay into the bulk
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of surface perturbations in a system at its criti-
cal point. For simplicity we consider the case

of a uniaxial magnetic system at criticality whose
order parameter, m(z), is constrained to take on
a nonzero value, m,, at its surface, 2=0. We
consider the behavior of m(z) as a function of z,
the distance into the bulk, and find that our form
yields several interesting results. First, as z
- we have

m(z)m z-(d-2+n)/2, 2<d<4
(Inz)'2271, d=4,

where d is the dimensionality of the system and

7 is the standard bulk exponent for the decay of
critical correlations. Under suitable conditions
we also find m(z) exhibiting power-law behavior
in z connected with the surface exponents recently
discussed by Wilson® and Diehl and Dietrich.?
Finally we are able to make contact with the
phenomenological theory of Fisher and de Gennes’
for the effect of wall perturbations in a system of
finite width. Some of our asymptotic predictions
coincide with theirs, but we see additional effects,
and our picture is free of a pathology that afflictsI

(1)

the Fisher—de Gennes phenomenology.

The existence of a simple form yielding new as
well as previously suggested results in a problem
that combines critical fluctuations, nonlinearity,
and nontrivial spatial inhomogeneity is, we be-
lieve, noteworthy. Furthermore, and of ultimate
importance, this simple form can be justified
within the framework of the renormalization-
group approach to critical phenomena, as will be
indicated shortly. A more detailed discussion of
the picture presented here, including a technical
description of the renormalization-group calcula~
tions, will be published elsewhere.

The uniaxial ferromagnet we consider has a
scalar order parameter s(x) and a reduced Hamil-
tonian

Fo=—H/kyT =~ [[5(Vs)2+3rs?+usild. (2)

The order parameter s(;{) corresponds to the local
magnetization. In the case of the binary fluid it
would correspond to the difference between the
local and the critical composition. Standard re-
normalization-group arguments® lead typically to
a free energy § o In{Tr [exp(3)]} that can be
written in the form

F=p-1'd f[ezt* e(“'2+")'$§(VM)2+%te”‘ e@-2rmi*pp2  , xp20d-2+ "”*M‘*]d% +(F -S). (3)

The term F in Eq. (3) denotes fluctuation corrections and S denotes subtractions. In a homogeneous

system the quantity I* is related to the correlation length, &, by £=e?’.

(The microscopic length scale

or lattice spacing has been set equal to unity.) In a momentum-space calculation e”?" is the lower cut-
off for the wave numbers of the degrees of freedom that must be eliminated via renormalization-group
recursion relations. The modified mean-field form on the right-hand side of Eq. (3) yields, with ap~
propriate criteria for the choice of I*, a scaling form for the free energy near criticality. The con-

tribution F — S also has this form.

The form (3) turns out to be adaptable to the problem of the decay of surface perturbations at criti-
cality if one makes the Ansatz that I* varies with position, or, in other words, if one accepts the no-

tion of a spatially varying covvelation length.

When the reduced temperature t<T — T in Eq. (3) is zero, the standard criterion for I* in a homo-

geneous system is®

12u*M2e (@-2+mi*_ 1.

(4)

Our adaptation of Eq. (3) allows a z dependence of I* by use of Eq. (4) with M replaced by m(z). The
equation of state satisfied by m(z) is obtained from Eq. (3) by differentiation with respect to m(z),

yielding

8F /om(z)=e V[~ e @ D@2y Jdz? + du*m3(z)e2@ 2 M1 )=, (5)

Inserting our /*(z) obtained in terms of m(z) via Eq. (4), we obtain for the equation of state

—dzm/dzz+f(u *)m(a+2+ m/@-2+m) _ 0. (6)
the solution of which is
m(z)=[(d -2 +n)(d +n)/4f(u'*)]“"2+m/4(z +ZO)-(d-2+ m/z, (7
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The asymptotic decay to zero of m(z) is with the
exponent noted in Eq. (1) above. Since £xe’’
cm(z) ¥ @ 2*™ e have £ xz+z, The correla-
tion length increases linearly with distance into
the bulk.

The test of this Ansaiz is the effect of fluctua-
tions. They must behave as if there were a cor-
relation length increasing linearly with z, and
they must be consistent with the scaling hypoth-
eses inherent in the form (3) for the free energy.
Since this free energy is just the bulk free energy
generalized to allow for a spatially varying cor-
relation length, the criterion of consistency with
scaling can be reduced to the requirement that
the subtractions necessary to eliminate diver-
gences of fluctuation corrections to mean-field
theory be just those that eliminate divergences
in the bulk, the infrared cutoff for fluctuations
varying appropriately with distance from the sur-
face. If this were not so, the recursion relations
that absorb the effects of the subtractions would
have to be altered, and there is no longer any |

guarantee that bulk critical exponents suffice in
the description of the asymptotic decay of surface
correlations.

The simplest way to proceed in the context of
a field-theoretical approach to critical phenomena
is via the interdimensional € expansion where, in
this case, € =4 -d. To simplify the justification
of our Ansatz, calculations here will be carried
out in exactly four dimensions, where mean-field
theory is asymptotically valid at the critical
point. The generalization of our results to 4-€
dimensions is straightforward, but involves
some technicalities, the complete elucidation of
which is too involved for the present format.

Simple mean-field theory amounts to minimiz-
ing the Hamiltonian (2) with respect to the order
parameter, s(xX). The functional extremum equa-
tion 63C/6s =0 with » =0 yields s,;, =m(2) with

my(z)=[2u]"(z +2,)7 . (8)

This is the limit of Eq.’(7) whend=4 and =0.°
Writing s(x)=m,(2z)+0(x) we have

=- f[%(dmo/dz)2+um04] d3 - ‘[[%(Vo)z"'euozmoz]dsx +0(03m0: 04)’ (9)

where 7, the unrenormalized reduced temperature, has been set equal to zero. The quadratic term in
o(x) can be diagonalized if we express ¢ in terms of the eigenfunctions of

£==-V2+12umi2==V2+ 6272

(10)

In Eq. (10) z, has been set equal to zero. The eigenfunctions of £ are

sz(§)=e‘a>'5)kzj2(kz).

(11)

The eigenvalue, X, is equal to k*+¢%. The vectors a and p are the (d = 1)-dimensional wave vector and
position vector in the plane of the surface. Given these eigenfunctions the four-dimensional propagator
appearing in Feynman diagrams representing fluctuations is

G(x,x’)

“16r%2z' 2zz'

where Ap=|p-p’|=Ap and R, %= (Ap)2+(z t2')2.
In the bulk at criticality the bare propagator in
four dimensions is, by contrast, given by

Gp(lx-%'|)x|x-%'|"2=R_"2 (13)

The infinite correlation length’s effect shows up
in the slow, power-law, decay of Gy for large
|X-%’|. In Eq. (12) one sees a crossover from
inverse-square behavior to a more rapid decay
when |x —x’| ~min (z,z’). When the separation is
large and well outside this crossover region, the
decay of the propagator, while not exponential,
is considerably more rapid than inverse square.
From the crossover we infer an effective corre-
lation length £(z,2z’) ~min (z,2’). This correlation
length provides an infrared cutoff in Feynman in-

2 2 2 2 2 2,72
1 {6_6(Ap) +2°+2 ln<§+2> +3 (Ap) +4’Z 4 (R_-2+R+'2)}’

2zz (12)

I;grals for the fluctuation corrections to thermo-

dynamic functions, which in turn dictates an in-
frared cutoff for subtractions and momentum-
shell recursion relations. We have verified to
two-loop order that the subtractions required are
the same as in the bulk. Thus no new recursion
relations are required and fluctuation corrections
ultimately take on the same scaling form as the
modified mean-field theory in Eq. (3).

All this holds when z,=0 in Egs. (7) and (8), or
when the order parameter has an infinite expec-
tation value at the surface. When m(0)=m, is
finite, an additional complication arises, but one
which can be dealt with within an € expansion. In
fixing the order parameter at the surface we con-
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strain the fluctuations, o(X), to be zero there.
The eigenfunctions of the quadratic Hamiltonian,
-V2+6/(z+2,)?, are made up of a linear combi-
nation of spherical Bessel and Hankel functions
of order two. The correlation length goes as z
+2z, when z is large, but it goes as z when z is
close to zero because the constraint on fluctua-

- * - * - *
— e @™ (@Pm [dz?) + durmPe2 @2V _GK yme 472 M 2,

If we take I*(z) to be given by Eq. (4) and insert
an m(z) « (z +2,)"4"2* /2 into Eq. (14), we find
that the added term merely yields a small cor-
rection to the amplitude of 7(z) when «* is small,
without affecting the power law.!° On the other
hand, if we set e!" =2z the new term dominates and
m(z) satisfies

—d?*m /dz® - 6K ;u*m(z)/2%=0, (15)
the solution of which is'

m(z)=Az** +Bz?-, (18)
with p, satisfying

Py =3[1+(1-24K,u*) 2]~ 15€¢/6. (17)

In the above we have used the lowest-order re-
sult® u*=€/36K,. The exponents in Eq. (17) are
the surface exponents to which we alluded earli-
er.58

The effective mean-field theory yielding both
proper decay to bulk order and surface exponent
behavior when it appears can be formed from the
equation of state (14) with I(z)=1n[£(z)] given by

[Gu*m(z)ze (d=-2+mi* +621$/z2]= 1. (18)

Widom’s® phenomenological equation of state
yields a slightly different power-law decay than
does our approach, and this can be traced to a
failure to scale the gradient term in the free en-
ergy properly. The phenomenology of Fisher and
de Gennes’ yields a power-law decay into the bulk
that is precisely the same as ours, but it does
not allow for the possibility of surface exponents.
Furthermore, if m(z) goes through zero, as in
the case of a thick slab with the order parameter
constrained to take on equal and opposite values
on the two faces, their correlation length, de-
fined essentially through strict application of Eq.
(4), goes to infinity and m(z) is predicted to be-
have singularly when it passes through zero. Our
approach allows us to retain a finite correlation
length at that point, consistent with the kinds of
fluctuations presen® when m(z)c« (z - 2,). No
pathological singularities are seen to arise.
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tions produces an additional infrared cutoff for
small z. The effective mean-field theory in Eq.
(3) must be amended by the inclusion of the single-
loop contribution to the fluctuations (which in-
corporates the additional infrared cutoff and
generates a “mass”). With the single-loop term
added the effective mean-field equation of state

is

(14)

Details of the two-loop calculation will be pre-
sented elsewhere along with further discussion of
“surface scaling” and additional considerations
specific to the fluid case. The authors gratefully
acknowledge support of the National Science
Foundation through the Division of Materials Re-
search.
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