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The density of states and the localized or extended nature of the eigenstates is investi-
gated in one-dimensional crystals with a modulation potential incommensurate with that
of the underlyiIg lattice. Studies of the transmission coefficient T and of the spatial de-
pendence of the eigenstates show that even in one dimension it is possible to have a mo-
bility edge. The implications of these results on experimentally measured quantities are
also discussed.
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In recent years there have been many studies
of crystals containing a modulating periodic po-
tential of a period different from that of the un-
derlying lattice. " Such modulations occur natu-
rally in crystals containing charge-density waves
or spin-density waves' as well as in ionic conduc-
tors' and finally it has become possible to grow
crystals with such modulation by molecular-beam
epitaxy' (superlattices). Such periodic modula-
tions can be either commensurate or incommen-
surate with the underlying lattice. Both cases
are of considerable interest theoretically and ex-
perimentally.

A crystal with an incommensurate modulation
presents an interesting case, in that, strictly
speaking, it does not possess translational order.
In this respect it is like a disordered solid. How-
ever, unlike a disordered solid, it possesses
lengths over which it almost repeats. Thus, an
incommensurate crystal presents a case inter-
mediate between an ordered and a disordered sol-
id. It has been argued'' that, within the one-di-
mensional (lD) one-band tight-binding model,
with incommensurate modulation there exists a
"metal-insulator" transition at a critical strength

of the modulation, i.e. , all the energy eigenfunc-
tions are localized above the critical value, while
all become extended just below it. Such behavior
is unlike that of a disordered solid, for which all
states are localized in 1D, or that of a commen-
surate crystal, for which all states are extended.
Such a transition in the nature of the eigenfunc-
tions which may be induced experimentally in
the same sample by, for example, external pres-
sure —presents a very interesting theoretical pos-
sibility that is worth investigating.

It is the purpose of this Letter to examine the
nature of the eigenstates of this model by study-
ing the transmission coefficient T of the 1D sys-
tem of size N. This technique is employed in the
problem of electrical conductar. .ce of a 1D disor-
dered crystal with very interesting results. ' '
In the course of the present study, a detailed den-
sity-of-states (DOS) calculation was made, and
the spatial dependence of the eigenstates was ex-
amined.

The model we consider is

6„c„+ (cf„~~+c„g)=Zc„,
where the energy at site n is e„=V,cos(gn), c„
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is the amplitude at site n, t is the hopping matrix
element, V, is the modulation potential strength,
Q is the wave vector of the modulation, and the
lattice constant is taken to be 1. We also impose
rigid boundary conditions to simplify the diago-
nalization of Eq. (1).

To decide the nature of the eigenstates of the
model in Eq. (1), we first accurately calculated
the DOS so the positions and widths of bands and

gaps are known. With the DOS three independent
tests were done to determine the nature of eigen-
states.

(i) We study the transmission coefficient T of
the system as the size of the system N increases
for a given energy E, modulation strength V„
and wave vector Q. For localized eigenstates
T -0 as N- ~, while for extended ones T $ 0 as
N- ~. We want to mention that in this problem
the study of the transmission coefficient T is con-
siderably simpler than for the 1D random poten-
tial as we are dealing with a definite potential and
thus all questions of ensemble averages'" do not
arise. On the other hand, because of some ex-
tremely narrow bands, special care is required
in order to avoid calculating T at a gap and erro-
neously interpreting the result as showing the ex-
istence of localized eigenstates.

(ii) By directly diagonalizing Eq. (1) for a giv-
en N, V„and Q, one gets the eigenvalue E and
the corresponding eigenstate. In the present
study, because of the one-dimensionality and the
rigid boundary conditions, the matrix form of
Eq. (1) is tridiagonal. Thus these eigenvalues
and the corresponding eigenstates' can be easily
calculated for systems up to 10000. The accura-
cy of our eigenvalues and eigenstates is roughly
sixteen and eight significant figures, respective-
ly, with the double precision in the IBM machine.
From the spatial behavior of the eigenstates, one
can decide their nature, i.e. , whether they are
localized or extended. The application of this
diagonalization method requires special care
when there is almost degeneracy. We shall re-
port elsewhere the related problems and the way
we faced them.

(iii) One can approximate Q by 2nN/M (N, M in-
tegers without a common factor) so that after M
sites the potential almost repeats. Consider the
nth group of M consecutive sites (nth block).
Within this group one can define e„~ ~ as the ei-
genvalue closer to the energy under consideration
and t ' as the effective hopping-matrix element
between wave functions of neighboring blocks.
(t~'~ =(g„~H~ g„„),where ~g„) is the wave function
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e„=V,[cos(Qn) + V, cos(2Qn)]

with V,/t = 1.9, V, = 3, and Q =0.7. The above

(2)

of the nth block. ) Since )gQ =g; c„;~i), where the
ith summation is over the sites of the nth block,
one obtains that t ' =tc„„c&„+,~„. c„„is the am-
plitude at the last site of the nth block, and c&„,y)~
the amplitude at the first site of the (n+ l)th block.
In all the cases we examined e„" is, within nu-
merical uncertainties, of the form V, '~ cos(Q '~n

+cp). This shows that under this transformation
the original Hamiltonian matches to itself with
transformed values of the parameters V, ' and
Q~'~. Our numerical results showed that for all
values V,/2t & 1, V, ' /2t ' & VJ2t, while for all
values VJ2t &1, V, '/2t ' &V,/2t independent of
the values of E and Q. Hence by repeating this
transformation it follows that for V, &2t (V, &2t)
the Hamiltonian maps finally into lim„„V,~ "~/t~"~

- ~ (0), which physically means that in the first
case the states are localized and in the second
case they are extended.

By combining for the first time the Green's-
function technique for calculating the DOS, direct
determination of eigenstates, and calculation of
the transmission coefficient T, we avoided the
common mistake of erroneously interpreting the
gaps as localized states. It is indeed the consis-
tency of the three complementary techniques
which allowed us to decide with confidence about
the nature of eigenstates.

For the case where e„=V, cos(Qn) and Q is an
irrational multiple of g our results show that
V~/f =2 is the critical modulation strength inde-
pendently of E and Q in agreement with previous
work. " For V, &2] all the states are localized
while for V, & 2t all the states are extended. In
the localized regime one can define a decay lo-
calization length l, either from the spatial decay
rate of the eigenstate or from the length depen-
dence of T as L-~, which agrees with that pro-
posed by Aubry, ' i.e., 1/I, =In(VJ2t). It is sur-
prising that V„ is independent of E. From ex-
perience with random systems, one expects the
states at the end of the band to become localized
more easily than those at the center. On the oth-
er hand, for e„=V, cos(Qn), the site energy spac-
ing becomes smaller as we move towards the
band edges and this facilitates propagation. It
seems that, for the simple sinusoidal case, the
two opposing tendencies cancel each other and
the localization is independent of the energy. To
check this physical explanation, we considered
more complicated modulations, e.g. ,
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FIG. 1. The density of states (DOS) per site as a
function of energy with N = 20 000, Q = 0.70, VD = 1.9t,
and V& = 3. The shaded areas denote localized states.

argument suggests that, for e„given by Eq. (2),
the eigenstates corresponding to high energies
are easier to localize than those for low energies.
By using the three methods which we described
before we found that this is actually the case and

that mobility edges exist. By using method (iii)
we found that e„~'~ is given by V,~'~ = cos(Q ' n

+y), but this time V,~' ~ depends on energy E.
For a given set of V„V„and Q (with V, less
than a critical value) one has some of the eigen-
states localized and some of them extended. In
particular, as seen from Fig. 1, the states above
E =0.70t are localized, while the rest are extend-
ed. Thus, our tentative conclusion is that the mo-
bility edge lies in a gap. The form of the DOS
cannot be used to differentiate subbands of local-
ized states from those of extended states [see
Figs. 2(a) and 2(c)]. On the other hand, the spa-
tial behavior of corresponding eigenstates [see
Figs. 2(b) and 2(d)] change drastically as we
cross the mobility edges.

Following the argument of Ref. 5, one can ob-
tain a rough approximate expression for the local-
ization function L(E), which becomes exact in the
limit L(E) -0: L(E) =t/(e„)~, where

&s.&, =exp[(li») f,
"

»ls(y)l dq],
and y =Qn. Integrals of this type can be calculat-
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FIG. 2. (a), (c): Blowup of two subbands of Fig. 1. Typical {b) extended and (d) localized eigenstates correspond-
ing to the centers of the subbands shown in (a) and (c), respectively.
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ed by taking into account that, since s(y) is peri-
odic and real,

excess resistance observed in disordered sys-

e(y)= g G e' ~= g G Z =—Il»(Z)/Z",
m= -&

where Z = exp(iy), and II»(Z) is a polynomial of
degree 2¹If Z „Z„Z„.. . are the roots of
Il»(Z) which are outside the unit circle then

—,'v ' f dylnie(y)i =IniG„Z, Z Z, . . . ~.

Substituting, we have finally that (eg, = iG„Z,Z,
x Z, . . . i. For the simple case where e(y)
=V, cosy, we have G, =V,/2, iZ,

~

=1, and hence
L(E)= 2t/V, . In this case L(E) happens to be ex-
act. In more complicated cases, L(E) can be
reasonably estimated by rounding t/( e), over an
energy range of the order of t (the rounding cor-
rects for the omitted higher-order terms in t/ V,).

In conclusion, the main result of our work is
that the presence of incommensurate modulations
produces in general mobility edges in 1D sys-
tems. Thus experiments in (clean) thin wires
with incommensurate modulations in which the
Fermi level can be made to be either in extended
regions or in localized regions, e.g. , by applying
pressure, offer the rare opportunity to study the
role of localization (versus electron-electron
correlations) in effects like the low-temperature
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The spin-orbit coupling modifies the weak localization of the conduction electrons in
thin films and reverses the magnetoconductance. This is quantitatively demonstrated in
Mg Alms covered with submonolayers of Au. The effect provides a new and direct method
for measuring the spin-orbit coupling.
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After the pioneering work of Thouless' and
Abrahams et al.' the localization of conduction
electrons in d - 2 dimensions experienced a grow-
ing interest. In particular weak localization in
two dimensions has been intensively studied theo-
retically' as well as experimentally. " In addi-
tion to the logarithmic divergence of the resis-
tance at low temperature, the strong magnetocon-
ductance which has been predicted by Altsehuler
etal. ' and Hikami, Larkin, and Nagaoka' yields
an excellent experimental possibility to study the
weak localization. I expect that this state will

become a most effective tool in the future to
measure basic solid-state properties. The pres-
ent paper describes a measurement of the spin-
orbit coupling. In addition to the weak localiza-
tion there is another low-temperature divergence
of the resistance which is due to impurity-induced
electron-electron interaction. ' It can be distin-
guished from the weak localization by the magneto-
conductance. '

A challenging problem in the theory of weak
localization is presented by the spin-orbit coup-
ling. Hikami, Larkin, and Nagaoka' calculated
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