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This paper reports a high-resolution synchrotron x-ray scattering study of the freezing
transition as a function of temperature and chemical potential of the two-dimensional
continuous-symmetry system monolayer xenon on graphite. It is found that for a cover-
age of 1.1 monolayers the transition is continuous to within the substrate-determined
resolution with fluid correlation lengths exceeding 100 atomic spacings. Comparison is
made with current theories of solidification in two dimensions.

PACS numbers: 64.70.Kb, 61.10.Fr, 61.25.Bi, 68.55.+b

The nature of the fluid-solid transition of two-
dimensional (2D) continuous-symmetry solids is
at present a matter of considerable controversy.

A theory due to Kosterlitz and Thouless (KT) sug-
gests the possibility of a continuous melting tran-
sition mediated by dislocation unbinding. Molec-
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ular-dynamics simulations of 2D solidification
have, however, proven to be ambiguous. ' Direct
experimental measurements are therefore of con-
siderable importance. Rare gases absorbed on
graphite provide a particularly good experimen-
tal realization of 2D solids; both the adatom-ad-
atom and the adatom-substrate interactions ap-
proximate simple Lennard- Jones potentials. Va-
por-pressure isotherm' and x-ray measurements
show that submonolayex xenon physisorbed onto
the (0001) surfaces of graphite has a gas-liquid-
solid triple point and a first order-solidification
transition to an incommensurate solid phase.
However, the liquid-solid coexistence region be-
comes narrower with increasing temperature and
coverage, suggesting that the transition could be-
come second order in the coverage region of ap-
proximately one monolayer. Accordingly, we
have carried out a high-resolution synchrotron
x-ray scattering study of the freezing transition
of xenon physisorbed on exfoiliated graphite with
emphasis on the 1.1-monolayer coverage region.

The experiments were performed at the Stan-
ford Synchrotron Radiation Laboratory using the
high-resolution x-ray diff raction spectrometer
stationed on beam line VII which is equipped with
a seven-pole wiggler. We used a high-resolution
spectrometer configuration similar to that de-
scribed previously. ' The longitudinal resolution
was 0.0003 A ' half width at half maximum
(HWHM), much less than the substrate finite-
size width of 0.0016 A '. The use of a wiggler
line in combination with improved mirror reflec-
tivity improved our signal by a factor of 30 over
previous adsorbed-gas synchrotron measure-
ments. ' The xenon-gas handling system and cryo-
stat were as discussed previously. " For the
substrate we used a 1.2&& 1.2&& 0.2 cm' plate of
Union Carbide Z YX exfoliated graphite, with the
c axis, which is normal to the plate, in the scat-
tering plane. At T = 112 K, scans were carried
out as a function of surface coverage near a cov-
erage of 0.85 monolayers. At a coverage of 1.1
monolayers, temperature scans were carried
out in a closed-cell configuration, so that both
the chemical potential and surface density changed.
At a constant temperature of 150 K, scans were
taken as a function of vapor pressure. The
closed-cell and constant-temperature runs
crossed the liquid-solid phase boundary at ap-
proximately the same point.

Data from the closed-cell run are shown in Fig.
1. An empty-cell background, corrected for
xenon absorption of the x rays, has been subtract-
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FIG. 1. Typical diffraction profiles from the closed-
cell solidification runs. Empty-cell background, cor-
rected for xenon x-ray absorption, has been subtracted.
The solid lines are power-law and Lorentzian line
shapes as discussed in the text.

ed. Below T=—140 K, we see, in addition to a
sharp (1,0) peak of the triangular structure at Q
=1.63 A ', an extra feature at Q =1.7 A ', which

appears to arise from substrate modulational ef-
fects." This peak is not observable above 140 K
because of the increased incommensurability. As
the temperature is raised from 135 to 151.3 K the
peak-to-wing intensity ratio decreases slightly.
Above T =151.6 K, the linewidth is observed to
increase rapidly and continuously, indicative of
decreasing correlation lengths and a solid-fluid
transition. The data taken versus chemical po-
tential at constant temperature show equivalent
features. One can characterize these changes
quantitatively by fitting specific diffraction line
shapes. In an infinite 2D continuous-symmetry
solid it is believed' that the divergent long-wave-
length fluctuations convert the solid-phase 5-
function diffraction peaks at reciprocal-lattice
points G to power-law singularities of the form

~(Q)-Q' ', (1)

Here q is the scattered wave vector and g is a
small positive number. In a finite system, the
anticipated profile may, to a good approximation,
be simply determined by convoluting Eq. (1) with
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the substrate shape function, which is well ap-
proximated by a Gaussian function' R(q) o: exp(- q'
x L'/4v) where L is the average crystallite size.
Experiments on commensurate krypton on Z YX
yield L = 2000 + 300 A and this value is obtained
for our sample as well. Using the analytic ap-
proximation of Dutta and Sinha' to this rounded
power-law function, numerically averaged over
planar orientation and vertical tilt, we generate
the solid curves in Fig. 1 for T = 135.0 and 151.3
K. It is evident that the power-law singularity
form for S(q) works very well. The errors on
the exponent q are estimated systematic errors
due to background subtraction, uncertainty in
crystallite size, and correlation of fitting param-
eters.

The diffraction peaks in the solid phase are
equally well described by a powder- and tilt-
averaged Lorentzian convoluted with a Gaussian
shape function corresponding to a finite size of
2000 A,

S(q) = c/(q'+ K').

Least-squares fits to this form yield an inverse
correlation length ~ of 0.0003 A ' in the solid
phase. For both the g power law and the Lorentz-
ian line shapes, the finite crystallite function
plays the role of a resolution function with HWHM

of 0.0016 A '; it turns out that g and z are essen-
tially determined by the ratio of the peak scatter-
ing amplitude to the wing scattering amplitude in
the measured profiles. In order to differentiate
between the two forms for S(q) we have also ana-
lyzed xenon-on-graphite data taken with a rotat-
ing-anode spectrometer, 4 with a resolution of
0.008 A ' HWHM. These low-resolution scans
yield the same values of g at equivalent tempera-
tures within the error limits; however, the val-
ues of R in the Lorentzian Eq. (2) are typically
greater by a factor of 5. We regard this as
strong support for the correctness of the power-
law singularity form for S(q), with rI= 0.3 at me—lt-
ing.

On the fluid side of the transition, the g line
shape does not describe the data. If we assume
oriented incommensurate droplets with exponen-
tial decay of positional correlations, we should
obtain a Lorentzian scattering profile. Powder
averaging over basal-plane orientation then
yields a function which is approximately the
square root of a Lorentzian. 4 In the data taken
at T = 112 K, we observe diffraction peaks at cov-
erages of 0.84 and 0.86 monolayer (absolute ac-
curacy + 5%) wh, ich can only be described as the
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FIG. 2. Fitted peak amplitude, peak position, and
inverse correlation lergth from Lorentzian line-shape
analysis of closed-cell solidification run. The solid
line is a fit of ~ vs T by the KTNHY theoretical pre-
diction. The dashed line is a power-law fit.

sum of a sharp, finite-size limited Lorentzian
peak with 0.00125 A ' HWHM and a broad "Quid"
peak with a 0.03-A ' HWHM. This is consistent
with vapor-pressure measurements which dis-
play a first-order solidification transition and
liquid-solid coexistence in this temperature-cov-
erage regime. ' We emphasize that at this cover-
age the solid has about 8% vacancies; this may
account for the first-order nature of the transi-
tion. However, in both the closed-cell and the
T = 150 K chemical-potential runs, where the cov-
erage at solidification is 1.1 monolayers, we ob-
serve a constant evolution of the correlation
length from 10 A to at least 500 A, with no evi-
dence for two-phase coexistence or hysteresis.
In the constant-temperature data, taken as a func-
tion of chemical potential, we see no evidence of
a discontinuous jump in correlation length as
would be predicted for a first-order transition.
The solid lines in Fig. 1 for T =152.00 and 160.0
K are the results of least-squares fits to powder-
and tilt-averaged Lorentzians. Figure 2 shows
the fitted values of the inverse correlation length,
peak scattering intensity, and peak position from
the closed-cell run. The error bars around the
inverse correlation-length values are estimates
of the systematic error due to uncertainties in
the subtracted empty-cell background. A variety
of other experiments, particularly commensurate
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FIG. 3. Normalized peak scattering amplitude, cor-
rected for vertical mosaic, vs inverse correlation
length.

krypton melting, ' have indicated that edge ef-
fects cause no pathologies on length scales less
than 500 A. Note that the peak position in the
fluid phase is at q = 1.58 A ', quite far from the
commensurate v 3&& v 3 R 30' value of 1.70 A '.

The exponent q in Eq. (l) also appears in the
scaling of the peak scattering amplitude with in-
verse correlation length in the fluid critical re-
gion, ' S(G) ~ ir" '. In the present case, the in-
trinsic line shape has been powder averaged,
changing the measured profile from a Lorentzian
to the square root of a Lorentzian, that is, S'(G)
= (I/2tr) J dy S(G) ~ Ir" '. Figure 3 shows the nor-
malized peak scattering amplitude, corrected for
vertical mosaic, versus inverse correlation
length for both the closed-cell and constant-tem-
perature runs. The solid line is a fit by the y" '
form with q =0.28~ 0.05. This agrees to within
the errors with the value g = 0.32"~'» determined
from the solid line shape at solidification, where
the upper error limit arises primarily from our
uncertainty in the exact location of T,.

Our data are thus consistent with a continuous
transition, with correlations in the fluid phase
reaching at least 500 A before finite-size effects,
substrate interactions, or possibly a weak first--
order transition play a role. The correlation
length as a function of temperature may be fitted
by the usual power-law form rr =K, (T/T, —1)".
The dashed line in Fig. 2 shows the result of such
a fit with Ko= 0'24 A ~ T = 152.04 Ks and p

=0.277. The precise values of these parameters
depend strongly on which points are included in
the fit, and in particular v could be as large as

~ =K, exp[ B-/(T -7,)"] (3)
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with v varying between 0.3696. . . and 0.40 depend-
ing on the strength of the substrate orienting
field. The solid line in Fig. 2 is a fit to Eq. (3)
with v fixed at 0.4; the parameters so obtained
areK, = 0.0818A ', B=0.643, and T, =152.00 K.
Equation (3) with these values describes the data
quite well for $ = ~ ' less than 500 A.

The KTNHY theory also predicts that the value
of q at solidification should be between 4 and —.
with the exact value depending on the elastic con-
stants. Our measurements give g = 0.32",",,' as
measured by the solid line shape and g = 0.28
+0.05 as measured by the relation of peak scat-
tering intensity to inverse correlation length in
the fluid phase. In making comparisons of the re-
sults with those obtained using other techniques,
such as molecular dynamics, it should be noted
that the system of 1.1 monolayers of xenon ab-
sorbed on graphite differs somewhat from an
"ideal" 2D continuous-symmetry solid. First,
the substrate provides an orienting field; second,
the film is in equilibrium with a 3D vapor; third,
there is a small number of atoms on the second
layer. We emphasize however that these effects
do not change the essentially 2D nature of the
phase transition.
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