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important observables in strongly deformed nu-
clei. The most conspicuous differences appear
in the gap parameter, in the quadrupole moment,
and in the single-particle occupation probabilities.
The limitations implied by the SD subspace are
thus not compatible with the coupling scheme ap-
propriate for these nuclei. By extending the
space to include pairs of particles coupled to 4
and 6, agreement is essentially obtained between
the IBM and the Nilsson-plus-BCS model.
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A novel nonlinear transport equation for the time-dependent single-particle occupation
numbers in an equilibrating fermion system is derived. In the case of constant transport
coefficients its anaiyticai solution together with an expression for the equilibration time
is obtained. Applications in mean-field theories extended to include particle collisions
for the description of low-energy heavy-ion reactions are envisaged.
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Dissipative heavy-ion collisions provide an
ideal testing ground for equilibration processes
in finite fermion systems. To account for both
one-body and two-body dissipation'2 during the
approach towards statistical equilibrium in a
mieroseopic dynamical model, time-dependent
Hartree-Fock calculations' have recently been
supplemented with phenomenological collision
terms. ' They simulate the effect of two-body

dissipation through a relaxation Ansatz. On the
other hand, microscopic theories have been de-
veloped to derive collision terms or to investi-
gate their structure. ' ' They describe the time
evolution of the single-particle occupation num-
bers in a given basis due to the residual interac-
tion. The result of the microscopic theories has
not yet been accessible for numerical calculations
or analytical approximation schemes.
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In this Letter I derive a nonlinear partial differ-
ential equation for the time-dependent single-par-
ticle occupation numbers in a finite fermion sys-
tem. The transport coefficients occurring in the
equation and thus the equilibration time are re-
lated to moments of the residual interaction. In
the model case of constant transport coefficients

I obtain the analytical solution through a nonlinear
transformation, I expect this approach to be use-
ful for the future understanding of dissipative nu-

clear collisions on the basis of extended mean-
field calculations.

I start from the equation for the single-particle
occupation numbers n„=n(—&„,t), 0 (n„(1, in a
fermion system' '.

"= g (V&& s2)G(e&+e»e„+e~)[(1-n„)(l-n&)n„n8 —(1-n~)(l-na)n„n&]
nay

with the second moment (V') of the residual interaction. In a finite system, the single-particle ener-
gies ~„(t) as well as the basis states i p(t)) depend on the mean field which changes in time in a nuclear
collision. As a consequence, the energy-conserving function G is not a ~ function as in the Boltzmann
equation, but acquires a width of several megaelectronvolts. Its form has been derived in Ref. 8.
Hence, collisions between nucleons in single-particle states that lie several megaelectronvolts apart
become possible, and the action of the residual force is expected to yield a rapid equilibration in nu-
clear collisions.

Let us write the collision term in the form of a master equation with gain and loss terms, respective-
ly:

Bn~/at =(1 —nq)QBWs-qn8-ning SWq s(1 -ns),
where

W„8-Q„y(V„y 82)G(e„+ay,e +e8)(1-n )nq

and S'6 „accordingly. The aim is to transform the collision term into a tractable partial differential
equation which contains the essential physical ingredients. The nonlinearity in the transition probability
is presently disregarded; improvement with an iteration scheme is, however, conceivable. The p sum-
mation is replaced by an integration, thereby introducing the single-particle level density g~ to obtain

sn„/st = fd p W~&[g&(1 —n„)ne -gs(1 —n 8)n„]. (4)

I have defined Ws „=Ws„g„,W„8=%'„qgs and
assumed W» =W». Since |"has a finite width,

W8& =W(—,'(e8+e&), e& —e&) is peaked at zero and

symmetric in x = e8 —e„. This can be verified
easily if one takes the equilibrium distribution
for n~ and n& in Eq. (3) and (V') =const. An ap-
proximation to Eq. (4) is therefore obtained
through a Taylor expansion of ns and g&zs around

With the introduction of transport coeffi-
cients via moments of the transition probability

D = Tg„fdh W(p, h)h',

v =gp (d/d6~)(gpD))

we arrive at the nonlinear partial differential
equation for n= n(e„,t), —

Bn B 2BD B—= ——v n(l n) +n' +-, [D n].
Bt Be BE BE'

This is the basic equation for the occupation-
number distribution. The dissipative effects are
expressed through the drift term u, the diffusive
effects through the diffusion term D. Both trans-

i port coefficients combine to determine the speed
of the relaxation process as well as the equilib-
rium distribution. Unlike in the case of linear
diffusion equations of the Fokker-Planck type, 2

solutions of Eq. (6) are rather difficult to obtain.
This is a consequence of the nonlinear terms
which are due to the exclusion principle. They
are essential for the proper description of the
time evolution.

We consider this equation further in the limit
of constant transport coefficients:

—=-v —[n(1-n)]+DBpg B B g
Bt Be Be2'

It has the correct Fermi-type equilibrium limit

n„(e) = {1+exp[- (v/D) (6 —Ep)])'
Here, the ratio of the two transport coefficients
rather than a temperature determines the diffuse-
ness. To treat the nonlinearity, we observe that
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the transformation

BP(~,t)
vP(Eq f) Be

tion"

Wg +Wtg, =DW «. (12)

reduces Eq. (7) to a linear diffusion equation for
P (e, f),

I, = -vP, +DP. .. (10)

n(e, t) = I+ no(x)f(x, s;t)dx/[ f f (x, c;t) dx],

where

where P, -=BP/Bt, P,= BP/—Be. Alternatively, we
transform

w (e, f) =v —2vn(e, f), (ii)
and obtain for w(&, t) the so-called Burgers equa-

This equation has been used for the description
of fluid flow. and, in particular, shock waves in
a viscous fluid. " The nonlinear transformation
of Ref. 11,

w(s, f) = —2Dq, /q&,

reduces it to the heat equation y, =Dy„. Hence,
for a given initial distribution n, (e) of the single-
particle occupation numbers, we solve Eq. (7)
via Eqs. (9) and (10) or Eqs. (11)-(13)to obtain

(14)

f (x, c;f) = exp{-~D 'fvx —2v I n, (y)dy]jexp[- (e —x)'/(4Df)].

1 evaluate analytical solutions (solid curves in Figs. 1 and 2' for v r'g . a ) o a iou ini ia is ributions n, (e),
0 P

n, (e) = [1-e(e —e,)]+[1-e(e —e,)]e(e —e,)
~ ~

~s reminiscent of a light-ion-induced nuclear colli
particle states in the continuum region of the potential and the r ' ' ' e

e r co iszon: The projectile particles initiall
e po ential, and the residual force then acts to equilibrate

em. uc a quasistatic picture is, however, oversim lified sin
time dependence of the mean field.

imp e since it does not yet consider the
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FIG. 1. Analytical solutions of the nonlinear diff' ear cren-

a equation (7) for the occupation-number distribution
in a finite fermion system. The initial distributions
(dashed curves) are I 0, the equilibrium distribution is

n . The transport coefficients are D = 20 x 10 3 MeV
s v = — xs, v = —5&& 10 3 MeV s '. Times are in units of
10 23s.
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FlG. 2. Comparison of the results for the relaxation
Ansats (left-hand side, with wt qU 4Dk ) and the ana-
lytical solutions of Eq. (7) (rij ht-hand side). Three
different initial distributions n 0 are shown. The relax-
ation Ansats causes a slower equilibration at short
times.
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From the structure of the analytical solutions
and the asymptotic values of the error function
erf(~) = 1, erf(- ~) = —1 occurring in the solu-
tions, it can be verified that they have the cor-
rect equilibrium limit (8), where the Fermi en-
ergy EF is given in terms of the initial values.
For n, given by Eq. (16) we obtain e„=s,—e, +e,.
This expresses particle-number conservation;
cf. Fig. 1. From the asymptotic expansion of
erf(z) it follows that the difference between actual
and asymptotic solution vanishes like exp(- v't/
4D). The equilibration time

r,~ = 4D/v' (17)

is determined by the transport coefficients and
thus, since ~,„,~D/v'cc1/(&'), essentially by the
strength of the residual interaction that enforces
the equilibration process. A microscopic calcula-
tion of v, from Eqs. (5) and (17) is very desir-
able. Here, I choose D=20x10" MeV' s ' and v
= —5xla" MeV s ' such that -D/v =4 MeV (to be
compared with the temperature), and 7, „=3.2
x 10 "s. The properties of the solutions are fur-
ther explored in Fig. 2. Here, the initial distri-
butions have hole regions of various extensions
below and particle regions above eF. The solu-
tions of Eq. (7) can still be obtained analytically.
From the right-hand side of Fig. 2 it is apparent
that the small disturbances are washed out much
more rapidly than the bigger ones. On the left-
hand side I compare with results for the corre-
sponding relaxation Ansatz n, = (n„-n )/v, ~ which
enforces equilibration towards n . The sequence
of times is the same as on the right-hand side.
For small times, and especially for small initial
disturbances, the relaxation Ansatz leads to a
much slower equilibration. This appears to be
due to the fact that the nonlinearity is not treated
explicitly. Hence, it seems worthwhile to replace
the relaxation Ansatz by the solution of Eq. (7) in
extended mean-field calculations.

To summarize, I have outlined a schematic
model for equilibration in finite fermion systems.
The master equation for the single-particle occu-
pation numbers has been transformed into a non-
linea, r partial differential equation, keeping track

of the exclusion principle in an essential way. I
have derived the analytical solutions in the sim-
plified case of constant transport coefficients.
Dissipative and diffusive effects combine with the
nonlinearity to yield the proper time evolution of
the system towards the Fermi-type equilibrium
limit. The equilibrium distribution will, howev-
er, be changed through the time dependence of
the mean field. Hence, it seems to be of great
interest to couple this model for the relaxation
in the occupation numbers to the time evolution
of the single-particle orbits" in order to get a
complete description of the equilibration process.
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