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the left (0& p«)-right (w & p& 2~) asymmetry in
the hadron momentum distribution with respect
to the lepton scattering plane,

(dn/dz) (left) —(dn/dz) (right)
(dn/dz) (left) + (dn/dz) (right) '

which is simply (4/&)(sing). Observation of an
asymmetry of a few percent with the expected
'sign should be clean evidence for QCD. Although
small and difficult to measure, determination of
the sign of (sin2p) could provide further evidence.

The left-right asymmetry for longitudinally
polarized electron scattering can be obtained
from our results in a straightforward manner.
Details will appear elsewhere.
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A method is proposed to calculate quantum numbers on solitons in quantum field theory.
The method is checked on previously known examples and, in a special model, by other
methods. It is found, for example, that the fermion number on kinks in one dimension or
on magnetic monopoles in three dimensions is, in general, a transcendental function of
the coupling constant of the theories.

PACS numbers: 11.10.Lm, 11.10.Np

Peculiar quantum numbers have been found to
be associated with solitons in several contexts:
(i) The soliton provides, of course, a different
background than the usual vacuum around which
to quantize other fields. The difference between
these "vacuum polarizations" may induce unusual
quantum numbers localized on the soliton. ' '
(ii) Solitons may require unusual boundary condi-
tions on the fields interacting with them, in par-
ticular leading to conversion of internal quantum
numbers into rotational quantum numbers. ' '

(iii) In the case of dyons, there is classically a
family of solitons with arbitrary electric charge.
The determination of which of these are in the
physical spectrum requires quantum-mechanical
considerations and brings in the 6) parameter of
non-Abelian gauge theories. "

At present all these phenomena seem distinct
although there are suggestive relationships. In
this note, we shall concentrate on (i), proposing
a general method of analysis and working out a
few examples.
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An intuitively appealing, and perhaps physically
realizable, example of the phenomena we are
addressing are the fractionally charged solitons
on polyacetylene. "' A caricature model of a
polyacetylene molecule is shown in Fig. 1(a)—in
the ground state we have alternating single and
double bonds, which may be arranged in two in-
equivalent but degenerate forms A and B. If
there is an imperfection, as shown in Fig. 1(b),
we go from A on the left-hand side to B on the
right-hand side. This configuration cannot be
brought to either pure A or pure B by any finite
rearrangement of electrons, and so it will relax
to a stable configuration a soliton. If we put
two imperfections together, as in Fig. 1(c), we
find a configuration which begins and ends as A.
Compared to the corresponding segment of pure
A, it is missing one bond. If we add an electron
to the two-imperfection strand, we can deform
this configuration by a finite rearrangement into
a pure A strand. {We are pretending, for sim-
plicity, that each bond represents a single elec-
tron instead of a pair. ) Interpreting this, we see
that a two-soliton state is equivalent to the ground
state if we add an electron. Thus, by symmetry,
each separated soliton must carry electron num-
ber ——,

' (and electric charge +-,'e).
We can relate these stick-figure pictures of

polyacetylene to field theory as follows: Let d,
&d, be the internuclear distances characterizing
single and double bonds, respectively. Define a
scalar field which is a function of the link i by

p, =(-l)'(d- ~d, ——,'d, ), where d is the internu-
clear distance for link i. Thus in the A configura-
tion cp;=-,(d, —d, ) (independent of i), in the B
configuration y;=- —,'(d, —d,), and in the soliton
configuration y,. interpolates between these val-
ues. Now we can show that it makes sense to
approximate y, by a continuum field and the inter-
actions of the electrons with y (a charge-density
wave) by ZI =gPy'pj's, furthermore the electrons

~ ~ /9, /4, / 9,/9, //X//X //X // X
A 8

(a)

.. /%. /4//X//X

(b)

/5 /X //X /9,

can be treated for present purposes (near the
Fermi energy) as relativistic particles.

In this formulation, we make contact with the
work of Jackiw and Rebbi. ' They found that the
spectrum of the Dirac equation in the presence
of a soliton contains a zero-energy solution. By
symmetry, this solution is composed of (projects
onto) half a positive-energy and half a negative-
energy solution with respect to the normal ground
state. Thus if we fill the zero-energy level, we
have a soliton state with electron number + —,';
if we leave it empty, the electron number is ——,'.

Su and Schrieffer have described a generaliza-
tion, "which occurs in a chain with a repeating
unit of single-single-double bonds, as in Fig. 2.
A slight modification of the discussion of Fig. 1
shows that we now have solitons which can be
added in triples to give the normal ground state,
deficient by one electron. We expect the electron
number of a single soliton to be -3.

A field theoretic model must now have essen-
tially new features. Jackiw and Rebbi emphasized
that in their model the Dirac equation in the
presence of a soliton has a charge-conjugation
symmetry, and then their interpretation of the
zero modes cannot account for any charges other
than half -integral. Thus we will consider models
where the background destroys all symmetries
which interchange positive- and negative-energy
solutions of the Dirac equation.

Our method of calculating the soliton quantum
number will be to imagine building up the soliton
by slow changes in fields, starting from the
ground state. In order to reach the solitons by
slow changes, we may have to enlarge the field
space during intermediate stages, as we shall
see. In any case, for slow variations of fields
i.n space and time, we can readily compute the
flow of the appropriate charge in the no-particle
state. We then simply integrate to find the ac-
cumulated charge on the soliton.

Let us illustrate these remarks on a concrete
example. We consider, in 1+1 dimensions,
massless fermions interacting with two scalar
fields y, and y, as follows:

Pp+
Now if y, and y, are slowly varying in space and

FIG. 1. (a) The two degenerate ground states for
electronic structure of polyacetylene. (b) An imperfec-
tion interpolating between the two ground states. (c) A

chain with two imperfections.
FIG. 2. A form of polymer with single-single-double

bond pattern in the ground state.
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time, i.e., their gradients are «g(y, '+ y, ')
we may conveniently calculate the change in the
expected value of j " = g y "g in the no-particle
state by considering the Feynman graph of Fig. 3.
Since the interaction (I) is chirally invariant,
we may first suppose that only y, ~ 0 at a given
point, and then express the result in a chirally
symmetric form. We then need only do a very
simple calculation for an effectively massive
fermion to find

(j tt) ~ttv~ V'a vV'»~ 1 8

=—&& 8, tan
1 „~V

If the scalar fields do not propagate (they repre-
sent very massive particles) more complicated
graphs need not be considered.

If in the end we reach the soliton state by slow
changes, we need only to evaluate (2) to find the
fermion number charge on the soliton. It is im-
portant to remark that the resulting state will be
a true eigenstate of the charge, not a superposi-
tion of states of different charge (even though we

only derived an expectation value). For this it
is only necessary to note that there are no de-
generate states of different charge. In this the
localized charge on a soliton differs from, for
instance, the "localized charges" of —,

' on the top
and bottom of an ammonia ion.

Two general features of the result deserve com-
ment. First, the divergence &p" vanishes identi-
cally, reflecting the conservation of fermion
number. Second, the charge Q= fj'dx'=(2&) '
xb(tan 'y, /y, ) is independent of the coupling con-
stant g and depends only on the values of q, and

y, at spatial infinity.
We can represent a massive fermion by fixing

&p, =m/g. If the theory supports a soliton for
which p, {x)-+v as x-+~, we find

Q=w-'tan '(gv/m).

Notice that this is a transcendental function of the
couplings! As m -0, we find Q- 2; this is the
Jackiw-Rebbi case of a single (linear) scalar
coupling. The limit m -0 is delicate just be-
cause there are two degenerate states of charge
+-,' in the limit. If we take m =0 from the begin-
ning, adiabatic changes will fill these equally on
an average. The current would vanish. A slight
perturbation lifts the degeneracy. Of course the
charge ——,

' state is reached by letting m —0
through negative values.

A field theory version of the chains of Figs. 1
and 2 is the interaction

for which we find

(j v) (2tt')- eu & 8 Q (2v)- ~8

The solitons with 8 varying from 0 to v (so two
together give 0-2m-0, equivalent to vacuum)
have charge —,'; with 8 varying from 0 to 2tT /3,
charge 3, etc.

Some 1+1 dimensional models become espe-
cially transparent if the method of bosonization
is employed. In 1+1 dimensions, one can re-
write fermion fields as nonlocal expressions in
boson fields. " Some bilinears transform in a
simple local way, however:

~A' stuV ~sttPS 0't

yy~g- &""s„y/v'v,

jl cos2~7I' (p,

ittt y, t!t - tu. sin2 vF q

(tu, is an arbitrary scale parameter). Thus the
interaction (4) becomes in this representation
2, =gp, cos(2&~@—8) Now i.f 8 in a soliton
varies by 60 from - to +, the potential -Z
is minimized when y= 8/2vm; in particular,
= b, 8/2/Tt. Integrating g y'!!t = &, y/+7t, we find the
charge a8/2&, as from our earlier derivation.

Although the v model proper does not support
finite-energy solitons, we can consider a fermion
interacting with external fields of this type. This
proves useful as a warmup for the gauge theory
monopoles to be discussed shortly.

The interaction Lagrangian is of standard form

Current

Ferrnion
——-K Sca I a r

PIG. 3. Vacuum polarization graphs for evaluation
of induced currents.

with ( an isodoublet fermion field. We compute
the induced current as in the 1+1 dimensional
examples, from graphs as in Fig. 3. A straight-
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forward calculation leads to flow at infinity, we find a fermion number

m '(() - sin& cos&), tan() =gU/m,

which -
~ as m -0.

We may extend this analysis in a simple way to
the monopole solutions of non-Abelian gauge
theories by simply gauging the SU(2) ISSU(2)
chiral symmetry of our 0 model. In the end, we
can specialize by setting the axial gauge fields
to zero, and fixing a fermion mass (y, = const).

The expression (6) for the current is changed
in the first instance by the conversion of ordinary
to covariant derivatives, ~- V =- ~+eA. This is
not sufficient, however, since this minimally

not conserved. The current

pn8y1
2 4 dabc Vd nba BV b /Pc ' (6)i2~ I j I

With this form, 6&(j ")-=0. This, of course, indi-
cates that only the behavior at spatial infinity
determines the charge, since changes in the
fields in a finite volume lead only to current
flows in a finite volume and therefore do not
change the total charge. In fact, if we take y,
= m/g, y, = P, (x)f(t), a = 1, 2, 3, where j,(x)
-vx, /ixi as jxi-~; and evaluate the current

(8)

modxfxed current xs

(j "&=12 ''" '""
I

yl'(v. 9).(v, y).(v,y). + ~"" ~l'(vyy)yl

obeys &„(j")=-(-e'/128m')6" & e,b,„F„s,bE)b, ,, .
This is the expected anomaly and vanishes when

we have only vector gauge fields as in the mono-
pole. The coefficient of the second term in (8)
can be checked by the evaluation of the diagram
in Fig. 3 with one gauQ field vertex inserted.

We now take p as before and A„=A,b(x), A„
= 0, a, b = 1, 2, 3, where y and A are the monopole
fields, and find the current flow at infinity. Since
(V, y), = 0 at infinity, the only contribution comes
from taking y=d =0 in the second term of (8) and

gives for the fermion number

(ec/4m') tan '(gU/m),

where 4 is the magnetic flux out of the sphere at
infinity. Since ec =4m, this gives fermion num-
ber —,

' when m -0.'
The direct utility of our results for particle

physics is highly problematical. Even if mag-
netic monopoles were found, their fermion num-
ber is not a reasonable quantity in standard theo-
ries. [In principle, we could imagine coupling a
U(1) gauge field to the fermion number, and so
the calculation is not entirely content free (]
We do think that the results are an interesting
curiosity in quantum field theory and as such
may eventually be useful. It is likely that kin-
dred, but experimentally accessible, effects do
arise in condensed matter systems.
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