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Universal Fine Structure of the Chaotic Region in Period-Doubling Systems
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A new relation is reported which quantitatively describes the fine structure of the cha-
otic region of period-doubling systems. The relation determines the onset of fundamental
periods and of ergodic behavior. It involves bifurcation rates p&, which converge to a
new universal constant &=2.94806. . . . This theory is in agreement with numerical de-
terminations of p&.

PACS numbers: 05.20.Dd, 05.40.+j, 47.25.Mr

Among the routes which lead to turbulent be-
havior the period-doubling route has attracted
particular attention since Feigenbaum observed
that there is quantitative universality. This peri-
od-doubling route has been found in various physi-
cal systems. Libchaber and Maurer have ob-
served it in a Rayleigh-Benard experiment with
small aspect ratio. ' Among these systems there
is also a class of driven anharmonic oscillators,
e.g. , driven Josephson junctions where the peri-
od-doubling route was found by Huberman and co-
workers. '4 In typical experiments one measures
spectra, i.e., Fourier-transformed time-correla-
tion functions, where period doubling is manifest-
ed by subharmonic peaks. The existence of uni-
versal constants should be reflected in these ex-
periments, e.g. , in the intensity ratio of subhar-
monic peaks. '

Many properties of period-doubling systems ap-
pear to be explicable by simple iterative maps.
Generally, when a parameter p, is varied a period
2' ' becomes unstable and a period 2' occurs at
critical values p, „which accumulate at p, „.' The
sequence of these so-called pitchfork bifurcations
is quantitatively described by Feigenbaum's rela-
tion p, „—p, ~

~ 6 ", where 5 is a universal con-

stant. ' While the period-doubling region of these
systems is well. understood, relatively little is
known about the chaotic region, which sets in at
p, „. Within the chaotic region there are periodic
regimes where so-called tangent bifurcations'
are responsible for the onset of new fundamental
periods P (each of which is followed by a pitch-
fork cascade P2"). It is known that certain peri-
ods must occur before others set in,"but quanti-
tative statements about their onset are unknown.

The purpose of the present Letter is to report a
new (Feigenbaum-type) relation determining dif-
ferent sequences of tangent bifurcations within the
chaotic region. These sequences are described
by a new universal constant y= 2.S4805. . . . The
same relation also holds for parameter values
with a certain chaotic behavior, which alternate
with the onset of new periods. It thereby yieMs
a more detailed picture for the succession and
scaling of chaotic and periodic behavior within
the chaotic regime. In experiments, the relation
determines the emergence of new subharmonic
spectral peaks of frequency I/p. We will report
numerical calculations revealing this relation
and describe a theory which yields y in an ap-
proximate renormalization scheme.
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FIG. 1. The band maximum x~ and its iterates as a
function of p. calculated for the loI istic map. P3, P4,
and P5 denote superstable fundamental periods. . At the
intersections of f'(x ) with the unstable fixed point x~
there is ergodic behavior.

We assume that the period-doubling systems
mentioned above can be reduced to iterative maps
of the form

x„„=f(x„p,),
where f is an analytic function of x„with a single
quadratic maximum. ' An example is the logistic
equation x„„=p.(x„-x„'). The sequence of pitch-
fork bifurcations at p, „accumulates at p. equal
to 3.5699. . . . Above p, „one finds a reverse se-
quence of bifurcations at parameters p. ~ where 2~

chaotic bands merge into 2" ' chaotic bands. With-
in a region of 2" bands new periods P set in by a
tangent bifurcation followed by a parameter win-
dow where P is stable. We have investigated se-
quences of periods P =q2» with k fixed and q = 3,
4, 5, . . . . The periods are defined by their itin-
eraries. For the sake of simplicity we start by
illustrating our results in Fig. 1 in the one-band
region (k =0). It shows the qth iterate f '(x„, p, )
of the band maximum x . Whenever the qth iter-
ate touches x there is a period q (which is super-
stable). There is a neighborhood where the peri-
od is stable. These cases are denoted by P3, P4,
and P5 in Fig. 1, which illustrates that the se-
quence of periods q = 3, 4, 5. . . accumulates at p.
= p,,=4. The cycles considered are characterized
by an ascending order, x, =f(x„, p.) &x,«x,
=x, and are defined by itineraries' gLC, ALLC,
ALLLC, . . . . The cycles are also characterized
as the last cycles of period q occurring before p.

= p,,=4. These considerations can be generalized
and the existence of such a sequence can be rig-
orously shown for a region of 2~ bands. In this
sequence periods P =q2" (k fixed) set in at param-
eter values p,~, which accumulate at the band

mergings p, ~. Our main result is a recursion re-

lation determining the onset of these periods p, ~
—p, ~,~ y~ '. Here y~ is the rate by which the
distance from the accumulation point is scaled.
y~ converges to a new universal constant y
= 2.94805. . . . When we also include the prefac-
tor the recursion relation' has the form

I"u- I"a, q=~~ '4 (2)

where a is a constant and 6=4.6692. . . is Feigen-
baum's universal constant. This equation is
based on numerical observations as well as on
theoretical considerations, which will prove the
universality of y.

Before we explain Eq. (2) in more detail we
note that there are still other sequences which
follow the same recursion relation including the
same constants y~: Above the band mergings (p,
& P,„)there are parameters where the (q2")th
iterate of x falls on the (2' ')th iterate. Thus
there are sequences of periods (2q - I)2" '

(q = 2,
3, 4, . . .) which accumulate at P~ from above.
They also have the same rate y~. Furthermore,
related sequences exist for certain chaotic points:
It is known that an ergodic invariant probability
measure which is absolutely continuous exists if
an iterate of x falls on an unstable cycle. ' In
Fig. I this happens where the f '(x, p, ) intersect
the dashed line. These chaotic points also accu-
mulate at p, = p, = 4 and their distance scales at
the same rate yo. Again a generalization to a
region of 2~ bands is possible and a recursion re-
lation like Eq. (2) holds for chaotic points where
the (q2")th iterate of x intersects an unstable
cycle of period 2~. This happens on both sides of
the band mergings jt ~ and involves the same rates
ye'
"

We will now present numerical tests of Eq. (2).
The parameters p,„,belonging to periods q2"
have been determined at the points of superstabil-
ity of these periods, where highest accuracy can
be achieved. The distance from the accumulation
point p„ is shown on a logarithmic scale in Fig.
2. In agreement with Eq. (2) the points lie close
to straight lines even for small q. The slopes
are determined by —lny~ and the vertical spacing
of the lines is in' as stated in Eq. (2). With in-
creasing 4 the slopes approach a constant —lny.
We have obtained similar figures for other one-
dimensional maps and have collected the values
of y~ in Table I. In the one-band and two-band
region the values are still different but they ap-
proach the same value 2.9481 with a rapid con-
vergence. This fact expresses the universality of
the constant y, which will be made more rigorous
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TABLE I. Numerical and analytic vali.'es of p„ in the
2 -band region for various maps f tr, p}.

p(x -x )
numer.

pg-x )
anal.

~~ P ~1-x)

nunc r.
px(1-x )
numer.

, . -10

1
2

8
16
32

4,0000
2.8177
2.9634
2.9463
2.9483
2.9481

2.817 61
2.963 32
2.946 25
2.948 27
2.948 02

3.3605
2.8943
2.9549
2.9472
2.9482

2.5981
2.9646
2.9472
2.9481
2.9481
2.9481

where we have dropped the arguments (x, p.). For
x=x„and p. = p, » all the iterates E"(x„,p, ») be-
come equal to F(x, P, ») and the products and
sums can be carried out." In the limit of large
q this yields

12

FIG. 2. Numerical test (logistic map) of the recur-
sion relation Eq. (2) for superstable periods q2~ for
different numbers of bands 2 . The slope of the lines
approaches —ln&, and their spacing, ln~.

where x.. .* is a point on the unstable cycle of
period 2» ' (or the trivial fixed point for 0 =0).
From Eqs. (3) and (4) it is clear that y» is given
by the square brackets in Eq. (6):

y =(d/dx)&(x, u)l. „,~, „,.

below.
In the following we investigate the parameter

sequences theoretically and calculate y~ and y
analytically. For convenience we do not carry
out the theory for the sequence of new periods
q2" but instead for the chaotic points where the
iterate f" (x, p, ) of the band maximum x inter-
sects the unstable cycle of period 2" (Fig. 1). As
mentioned above the same recursion relation Eq.
(2) accounts for these parameter values which
will now be denoted by p~, . In the limit of large
q the distance p~- p, ~, is determined by the in-
verse slope of f" (x, Iu) as a function of p, :

[(d/dl )f" (x., ~)I„-„] '. (3)

From Eq. (2) we expect this to be proportional to
Introducing a new map

E(x, p,) =f"(x, p, ),

we can write f" (x, p, ) =E'(x, p). By mathemati-
cal induction it can be shown that

From this equation we can easily compute y„ in
the one-band case which for the logistic equation
gives yo= P»(l —2x«") =4. Equation (7) repre-
sents an analytic expression for y„which can be
carried out for any finite k if the band merging
parameters p~ are known. Using numerical val-
ues for P.» we have calculated the analytical re-
sults for y„ in the third column of Table I. These
are more accurate than the numerical results in
the second column. From Eq. (7) we can also de-
termine the (universal) constant y= limy„with
high accuracy (using a large k). We have thus ob-
tained y= 2.94805. . . .

The universality of y follows easily from Eq.
(7). Assuming that f(x, p, ) has its maximum at
x= 0, we can introduce a topologically conjugate
function G=k»f'"(A»x, p) instead of Il, which
leaves y~ unchanged. In the limit k ~ and p,

= p, „the function 6 becomes a universal function'
and therefore y„becomes a universal constant y.
One can also obtain an approximate analytic ex-
pression for y in an approximate renormalization
scheme. " Starting the renormalization at k =1
in the logistic equation we obtain y=(2 —p,„)'
= 2.4646. Improvements are possible; e.g. , start-
ing the renormalization at k = 2 we obtain y =(- p, „2

+ 2 p,„+4)' = 2.5741.

977



VOLUME 47, NUMBER 14 PHYSICAL RKVIKW LKTTKRS 5 OCTOBER 1981

We resume with what we now know about the
fine structure of the chaotic regime. Above and
below the band mergings p~ sequences of tangent
bifurcations of period q2" and(2q —1)2" ' accumu-
late at LL(, ~. The parameters p, are not only ac-
cumulation points for stable periods but also for
ergodic behavior on both sides of p™~. These ac-
cumulations all follow the rate y„which becomes
universal for large k. The accumulation points

p~ by themselves accumulate at p. at a rate 6.
On a finer scale each tangent bifurcation (e.g. ,
q2~) is followed by a subharmonic cascade (e.g. ,
q2'2" with q and k fixed). This cascade accumu-
lates again with the rate 5. This quantitative fine
structure should become observable in experi-
ments where spectra are measured, e.g. , in a
Rayleigh-Benard fluid or in a Josephson junction.
In a Rayleigh-Benard experiment the role of the
parameter p. is played, e.g. , by the Rayleigh num-
ber. The onset of a new period P is marked in
the spectrum by the occurrence of a subharmonic
peak at frequency 1/P. The critical values of the
Rayleigh number where this happens should obey
our recursion relation Eq. (2) (e.g. , for a se-
quence of fundamental periods 3, 4, 5. . .). It has
been found recently that the presence of external
fluctuations may inhibit large periods depending
on the width of the parameter windows where they
are stable. "" The experiments are thus re-
quired to be relatively free from external noise.
Libchaber and Maurer' have observed subhar-
monics belonging to period 16. From the width of
the window of period 16 we can estimate that, e.g. ,
the sequence of fundamental periods 3, 4, 5, .;.
should be observable up to period 5 under the
same circumstances.

We acknowledge helpful discussions with J. Kel-
ler.

Note added. —(a) The widths of parameter win-
dows are also scaled down by y. Here a window

may be understood as a parameter interval for
which a certain period is stable or to which a
cascade p2" extends. An equation similar to Eq.
(2) holds for the widths. Therefore, if the width
of a pa, rticular window (e.g. , of period 3) is
known one can estimate the width for any other
fundamental period mentioned in this paper and
also for their subharmonics. Denoting by Ap.„,„
the width of the nth subharmonic of a fundamental
period q2" the estimated width is EJLLp, +f0 3 0
&& 5 " "y' '. (b) Equation (2) also determines the
onset of intermittent chaos and it seems likely
that the widths of windows of intermittency are
also scaled by y.
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