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The quantum analog of Kramers’s classical theory of the rate of activated events is
presented. By means of a path-integral approach, the correlation function expression
for the rate of barrier crossing by a quantum mechanical particle coupled to a heat
bath is evaluated for finite temperatures. Tunneling effects are dramatically diminished

by the frictional influence of the heat bath.
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The dynamics of activated events in which a
free-energy barrier must be surmounted plays a
central role in many areas of physical science,
most notably chemical kinetics. In this paper we
turn our attention to the quantum mechanical de-
scription of activated events in condensed phases.
This problem also has several aspects which are
relevant to other problems in the dynamics of
quantum mechanical systems with dissipation.

Since Kramers,' a popular model of an acti-
vated event has been a particle moving classically
in a double-well potential while coupled to a heat
bath. Recent studies®™ have clarified several
points about the influence of the heat bath on an
activated event. First, it can modify the effec-
tive potential on which the dynamics takes place.
Second, it provides a dissipative mechanism
which alters the course of an activated event
materially. When the interaction with the heat
bath is weak, the rate, classically, is limited by
the rate at which energy can be supplied to the
reactive degree of freedom. When the interaction
is strong the rate is limited by the Brownian dif-
fusion of the reaction coordinate. Because of
these effects the traditional transition-state
theory® of the rates of activated events is often
not quantitatively accurate. Although the clas--
sical description is doubtless adequate for many
situations, significant quantum effects appear
when light particles are being transferred or
when the temperature is low. Examples include
proton transfer reactions® in which large isotope
effects are observed,” tunneling in low-tempera-
ture solids,® and, more speculatively, quantum
nucleation in various field theories with unstable
vacuums.®

The model that we consider is the quantum
analog of Kramers’s model, a quantum mechani-
cal particle in a double well coupled to a Gaus-
sian heat bath providing dissipation and fluctu-
ating forces. The analysis starts with an ex-
pression for the rate constant originally derived
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by Yamamoto using linear response theory.°
This correlation function expression can be
evaluated with use of a path-integral representa-
tion of the thermal density matrix and the time
evolution operator.!* The path-integral approach
is convenient because it allows the inclusion of
the effect of the heat bath as an influence func-
tional in much the same way as in Feynman’s
theories of the polaron'? and quantum noise
phenomena'® and because it facilitates a semi-
classical approximation, making the comparison
with classical theories easy. Following Kramers,
it is assumed that the time correlation function
can be evaluated with use of a potential accurate
only near the barrier top—an inverted parabola.
While this is a rather accurate approximation
for moderate to high damping, in the classical
regime, its validity is more limited in the quan-
tum regime. Nevertheless, with this approxi-
mation the analysis can be carried out exactly.
In the classical limit the result reduces to that
given by the Grote-Hynes generalization of
Kramers’s theory to frequency-dependent fric-
tion.? In the limit of zero damping the theory
reduces to the simple forms of quantum transi-
tion-state theory used for many years to inter-
pret kinetic isotope effects.'* It is also shown
that quantum tunneling effects are diminished by
the damping from the heat bath. A similar con-
clusion has been reached for the zero-tempera-
ture case independently in a heuristic develop-
ment due to Caldeira and Leggett.'® The present
finite-temperature theory, in contrast, is most
accurate at high temperatures. Ishioka has also
come to this conclusion for high temperatures on
the basis of a Wigner-Kirkwood expansion of a
quasiphenomenological master equation. His
analysis appears to be flawed, however. In his
derivation of the Wigner-Kirkwood expansion he
incorrectly assumes that the equilibrium reduced
density matrix is unchanged by the coupling to
the heat bath and he solves his resulting master
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equations with an expansion valid only at high
damping.

The rate constant can be represented as the
limit of the Kubo-transformed reactive-flux cor-
relation function'®:
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where £ is a unit Heaviside function measuring
the occupancy of one side of the double well, 3
is the inverse temperature, and the denominator
is the mean square fluctuation in the occupancy.
We mean by the limit that there is a plateau val-
ue? which is well defined when there is a clear
separation of time scales between the chemical
reaction rate and the inherent molecular time
scale. As noted by Pechukas,'” this expression
already illustrates a difference from the clas-
sical case. In classical mechanics the initial
value of the flux correlation function equals the
rate constant given by transition-state theory.
The quantum reactive flux vanishes initially be-
cause of the cyclic invariance of the trace, and
rises on the thermal time scale gh. Physically,

G= [Dux(t) expl(S,/) ) + (/%) [[dt ds v (¢, sk (ke (s)).

Here S,(x) is the Lagrangian for the bare double-
well system; the additional influence phase con-
tains information about the dissipation arising
from the coupling to the heat bath. It is impor-
tant to note a difference between our way of
using the influence functional and the way it is
used by Feynman and Vernon. They assume that
initially the system can be considered to be in a
state in which the system and bath are independ-
ent so that the density matrix factorizes. The
exact equilibrium density matrix does not fac-
torize so that in evaluating time correlation
functions the influence phase couples dynamics
for both real and imaginary time. An amusing
but familiar feature of quantum mechanics is
that dissipation and thermodynamic effects are
intimately connected, unlike the classical situa-
tion where damping and structural, thermody-
namic effects of the heat bath can be clearly
separated.

A semiclassical approximation to G can be
found by the usual steepest-descent method ap-
plied to the path integral.'® Rather than carry
out this analysis for a general potential, we now

this difference arises because the linear re-
sponse preparation of the initial nonequilibrium
state classically leads to a sharp discontinuity
in the density at the barrier top, which is
smeared out wave mechanically by diffraction
effects. If the thermal time scale and the dynam-
ical time scales are comparable quantum transi-
tion-state theory becomes somewhat ambiguous.
In order to carry out the averaging over the
bath degrees of freedom, the thermal density
matrix and the evolution operators are repre-
sented by a functional integration over the tra-
jectories of the entire system. Because of the
trace, only paths periodic on the interval 0 to
iBh are included. The reactive-flux correlation
function can be conveniently written in terms of
G(xy,t,3x,, t,), the restricted sum over paths
passing through x, at time #,, and x, at time ¢,;
x labels the reaction coordinate. When G is
written as a path integral, the integration over
the bath degrees of freedom can be explicitly
carried out in two cases: if the bath is made up
of harmonic oscillators, or if each of the many
individual degrees of freedom of the heat bath is
weakly coupled to the reaction coordinate. G can
then be expressed as a path integral in which the
path probability amplitude is modified by a
Gaussian influence functional':
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make an approximation motivated by Kramers’s
classical theory. When the damping is moder-
ately strong, the correlation function (£ (0)£(¢))
classically reaches its plateau value in such a
short time that the particle does not leave the
vicinity of the barrier top. We therefore use the
inverted harmonic oscillator potential with a
frequency fitting the actual potential at the bar-
rier top to evaluate the quantum mechanical
correlation function. For an inverted oscillator
potential the semiclassical analysis is exact and
leads to a Gaussian form for G. Because of the
Gaussian nature of G, it is possible to express
the result in terms of the response function
satisfying the classical equation

d%g/di? — wt%g + [y(¢,s)g(s)ds=6(t =)  (3)
over the time interval O to iB% subject to periodic
boundary conditions. iw' is the pure imaginary,
undamped frequency of the inverted oscillator.
Because of the periodicity this response function
can by expanded in a Fourier series:
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where w,= 27 N/iBh and {(w) is the frequency-dependent drag coefficient which is related to 7y through
a finite Fourier transform. With g(¢) in hand, the reactive flux (before the Kubo transform is per-

formed) can be written as

1 /g, 1/2 1 dg.[ =
k(t)—_21r<g_> g, dt [N:IL,

T2 _ 2,5 -1/2
c::)z - wt:gJéZ (cf)(:z;clc;N>] exp(=ET), (5)

where g, =g(0)xg(t), E " being the barrier height, w, the frequency associated with the reactant well.
The thermodynamic prefactor in the rate expression is a product over the Fourier modes.

Most often ¢ (w) can be adequately represented as a rational function, in the upper half complex-w
plane. Then both the infinite products for the traces and the infinite series for the response function
can be analytically computed. If the poles of the frequency-dependent susceptibility are at w'’ with
residues A;, the response function is given as a finite sum of hypergeometric functions'®:
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and the infinite products can be represented as gamma functions.

The large-time asymptotic properties of the hypergeometric functions determine the overall rate
constant. For each of the poles of the susceptibility lying in the upper half-plane both hypergeometric
functions vanish asymptotically. There is one unstable mode of motion at the barrier top, however.
This gives a pole in the lower half-plane at —iw, which leads to an exponentially growing contribution
tog,. Using the gamma function representation of the infinite products, it follows that

 w ' LT (=iw™9 gr/2m)
k== e, SXP(-FE )er(-iwomgh/zn) :
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The w T ’s are the poles of the susceptibility for [ values of the drag coefficient are plotted. Damp-

motion near the barrier top. This is the main re-
sult of the paper.

In the classical limit this tunneling factor ap-
proaches unity leading to the result found by
Grote and Hynes.* In the zero-damping limit the
poles in the susceptibility occur in pairs, giving
the traditional quantum transition-state result,

(Brw T /2)/sinh(Bliw T /2)
(Bfiw,/2)/sinh(Bliw,/2)

This result diverges for g#w'=27. Traditional
derivations based on one-dimensional scattering
theory'* indicate that this arises from the fact
that below this temperature the tunneling proba-
bility for an inverted harmonic oscillator po-
tential does not decrease as rapidly as the Boltz-
mann factor increases, as the energy of an in-
coming wave decreases. Despite the singularity,
derivations of the undamped result via scattering
theory show that this result is accurate to within
a few percent®® at Bhwt=7. It is reasonable to
expect similar accuracy for the damped results
for temperatures as low as f=7n/hw,. By ex-
panding the gamma functions in powers of their
argument it is easy to see that according to the
present approximation the tunneling correction
to order 7%® is unchanged by the damping.

In Fig. 1 representative results for the rate
constant as a function of temperature for various

k= _Z“iﬂu exp(-BE ")
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ing profoundly decreases the tunneling effects,
and should therefore be taken into account in the
interpretation of kinetic isotope effects in con-
densed phases. The results in Fig. 1 involve the
assumption that the drag is independent of fre-
quency. If a Lorentzian frequency dependence of
the friction is assumed, one finds that the tun-
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FIG. 1. The Arrhenius prefactor of the rate constant
[ 27k exp(BET) is plotted as a function of the dimension-
less inverse temperature 8 for several values of the
drag coefficient. The magnitudes of both the well and
barrier frequencies are taken to be unity. The curves
from top to bottom correspond with ¢ =0.01, 0.5, 1,
2, and 4 in the same units.
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neling is increased as the characteristic time
scale of the friction is increased, at fixed zero-
frequency friction. For finite friction these re-
sults exhibit divergences at sufficiently low tem-
perature just as in the frictionless case. Fur-
ther studies that take into account the potential
away from the barrier-top region are then war-
ranted. Outside the low-temperature regime we
also expect deviations from the present result
for sufficiently low damping because the clas-
sically rate-limiting energy-dissipation proces-
ses are not adequately described by motion near
the top of the barrier.
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