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Excitation Spectrum of a Dimerized Next-Neighbor Antiferromagnetic Chain
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The excitation spectrum of an antiferrornagnetic chain exhibiting the effects of both di-
merization and frustration is studied. The method used is based on an exact solution for
the doubly degenerate ground state, and views the excitations as propagating defect boun-
daries between the two exact ground states. These excitations are analogous to solitons, "
and can bind into a second type of excitation, analogous to "breathers. "

PACS numbers: 75.10.Jm, 75.30.Kz

In this Letter we consider a one-dimensional model for magnetism which includes two distinct phe-
nomena of great current interest. First, the model exhibits frustration through the competition of
nearest- and next-nearest-neighbor interactions. Second, the model is dimerized through the intro-
duction of nearest-neighbor interactions alternating in strength. This resulting model is of sufficient
generality to include several recent models considered by others in the literature, and in particular
we locate and consider in detail the singular point corresponding to a model first treated by Majumdar.
This model is a special class of models in two and three dimensions treated recently.

The system we consider is a linear-chain antiferromagnet of 2M spins described by the Hamiltonian

2 [2+~2i-1 2i + 2@2i, 2i+1 + r(~2 i-1~ 2i+1 +~2 i,2 i+2) ) '
I—i —M

We impose periodic boundary conditions so that
i+2M=i, and assume o., P, y ~ 0. The two-spin
Hamiltonian h, , is

with J„,Z„J,~ 0, and ! S;!= S. The parameter
space of this model is shown in Fig. 1, where
we normalize so that o. +P+y =3. This is a use-
ful representation to exhibit various special
cases which have been previously studied in the
literature, and for which exact or approximate
results are known for the ground state (g.s.) and
elementary excitations (EE). However, we first
remark the symmetry under exchange of o. and

The points 8 = (3, 0, 0) and C = (0, 3, 0) are, of
course, known exactly for all models, being
simply a two-spin problem. For S= ~ the points
A =(0, 0, 3) and &=(2, g, 0) correspond to the
nearest-neighbor X-Y-Z model which has been
extensively studied by using generalized versions
of Bethe's Ansatz. The symmetric point O=(1,
1, 1) and the line AOA. were first considered by
Majumdar and co-workers' for the isotropic, 8
= —,

' case, and several exact and numerical re-
sults are available. The line BA.C has been in-
vestigated numerically by Fields, Blote, and
Bonner for the isotropic, S= —,

' case. ' These re-
sults indicate that the symmetric point A is a
singular point. Physical realizations of the
model are available at several values of the pa-
rameters and provide an additional impetus for

e(~,o,o) A($/2, 5/2, 0) c(o,s,o)

FIG. 1. Parameter space of the Hamiltonian.

! its study.
In this Letter we focus attention on the lines Bo

(P =y) and CO (o. =y), and in particular, concen-
trate on the point O (oi=P=y) and its vicinity.
Among other results, we extend Majumdar's in-
vestigation to determine the exact g.s. energy for
the general situation of arbitrary spin and anisot-
ropy along portions of the line DOC. For the
popular isotropic, S=-,' case, we determine the
g.s. energy for the whole line BOC, and estab-
lish that the point 0 is a singular point of the g.s.
energy corresponding to a first-order transition.

The main results reported in this Letter con-
cern the excitation spectrum and low-tempera-
ture thermodynamics of the model at the point 0
(oi=P=y=1). Here, the g.s. is doubly degenerate
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W= -3n S(S+1)(J„+J,+J,). (4)

We next show that E, saturates a lower bound to
H for appropriate values of parameters, and
hence i g, ) is the exact ground state. To see
this, we decompose H =QH„where the sum is
over the 2M triangles (each triangle consists of
two nearest-neighbor bonds and one next-nearest-
neighbor bond). The Hamiltonian H, is of the
form

H j QA j j+y +A j~y j +A j~] jy] ~ (5)

The Rayleigh-Ritz variational principle implies
E&, = (g&, i+,H, i g &, ) &2Me„where e, is
the g.s. energy of H, . We have shown that e,
equals W and, hence, i g, ) is the g.s. provided
Q. ) n» where the bounding value in two cases
of special interest is (a) n„=1for S= —,', and for
arbitrary J„,J„andJ„(b)n, = 1 + S for S ) 1
in the isotropic limit 4„=J,= J,. Other cases

and we show that it first exhibits long-range
order in the four-spin correlation function. We
have developed a simple physical picture for the
EE in terms of propagating defects or boundaries
between the nonequivalent ground states and
present our variational results for the ensuing
quantum lumps (or solitons) and the bound state
of pairs (a "breather" bound state of a soliton-
antisoliton pair). We also present a simple and
yet accurate theory for the low-temperature
thermodynamics based on these independent quan-
tum lumps. Our picture of the excitations bears
some resemblance to that recently proposed in
connection with other linear -chain systems'.

Let us confine ourselves henceforth to BO and
further set 0= y = 1. Consider the state

lq, )=[1,2][3,4][5,6] ~ [2M —1, 2M], (3)

where [i,j ] denotes the normalized singlet com-
bination of spin i and j. It is easy to see that

i g, ) is an eigenstate of H by using the relation
(S, "+S,")[i,j]=0 (n=x, y, z). The eigenvalue
is E, =2MB', where

can likewise be evaluated. These conditions are
identical to the ones discussed recently in con-
nection with the two- and three-dimensional
problem solved by us. 4

We now show that n~ is, in fact, a critical
value of the parameter in the case S= —,', and for
n & n, the nature of the ground state is different,
implying a (first-order) level-crossing phase
transition. To see this, consider the state

= [ 2M, 1][2 3] [ 4 5] ' ' ' [ 2M —2, 2M —1] (6)

Choosing i g, ) as a, trial state we find E„i,i
=--,'( J'„+J, +J,)2M, and hence E„;,i&E„imply-
ing that ig, ) cannot be the ground state for n &1.
For S) -,', i g, ) is not a better variational state
in the range I - u - 1+S and hence the above does
not constitute a proof, but we expect that a, is
probably a critical value in that case too. For n
)e„the nature of ground-state correlations is
short ranged and "liquidlike" and, hence, we may
term the phase a "quantum spin liquid. " In the
remainder of the Letter we consider mainly the
case S=-,', and the point 0 (n= P = y =1).

At the point 0, the Hamiltonian possesses
(lattice) translation invariance (invariance under
i -i +1) but the state i (,) does not. However, it
is easy to see that the state i p, ) is also an eigen-
state of H with the same eigenvalue, Eq. (4).
Hence, for 8= ~, the model has two nonequivalent
ground state i/, ) and i g, ) at the point 0. (The
two states are orthogonal in the limit M - ~.)
The br@aking of translation invariance leads to
the existence of long-range order in the four -spin
correlation function. We construct a state i 0)
=(I/W2)(i g, )+ i Q,)) which is clearly an eigenstate
of H with eigenvalue Eq. (4) and is also a zero-
momentum state and, hence, may be regarded
as a physically acceptable ground state. We
find the two-spin correlation function K~ )(ij)
-=«IS S,'I»=! &;, —85i;,i,. The four-spin
correlation function K ' (ij; lm) = (Oi S,"S,."S,'S '
0) can also be easily calculated and we find for
i+j /)) /I+m/

K~'&(ij; fm) -K~'&(ij)K ')(lm) = +,—', 6i;,.i, 5i, „i,exp[i(z/2)(i+ j-I —m)]. (7)

In order to construct the excited states at the point 0, we restrict ourselves to the isotropic limit
(J„=J', = J, ) and S = —,'. In this case we have two ground states

i p, ) (say phase A) and i g, ) (say phase
B) and it is natural to think of excitations as consisting of the two phases separated by a defect. There-
fore we consider the basic defect states

g(p, m) =[2p -3, 2p -2]n», [2p+1, 2p+2]. [2m -2,2m —1]n2 [2m+1, 2m+2], (8)

where n, is an up-spin Pauli spinor. In Eq. (8) we have two defects since periodic boundary conditions
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preclude an odd number, and the two defect sites have been assigned spin up. There are three other
spin assignments possible and, hence, we have a total of four defect states for a given p and m (the
total number of states is therefore 4M'). The set of two-defect states does not form a complete set of
spin-1 states and hence our results, which are restricted to the above space, are variational in nature
rather than exact. We expect, however, that the error involved should be small in view of the optimal
nature of the functions.

We introduce the momentum-space wave function

p~, „(k,—k2) —= Q exp[i (2pk, + 2mk2) ] p (p, I),
1~P,I—M

where k, +k, is the total momentum and periodic boundary conditions determine k, and k,. The overlap
matrix of g's in momentum space can be worked out and after considerable algebra we get

(q, , (k ), II, (k)) =6, , [(3J/4~, )(3J/4~ )M~. .. +~, (k,k )], (10)

)to(k, k')=, , (cosk+cosk'+ —;cosQ)[4~(e" +e " ) +cosQ t(k, k')],

where t(k, k') =1+e'" ~, ~,=~((Q+k)/2), &u, '=v((Q+k')/2), and &u(p) = J(~~+cos2p). In a similar fash-
ion, we compute the matrix element of the Hamiltonian in momentum space where

(yo (k'), (& -&,)yo(k)) = &o oi[M a„„,(3J/4(u+)(3J/4(u )((u, +(u ) +h~(k, k')],
h z(k, k ') = —,

' t(k, k'' ) + 8 [t (k, k ') + ~~ (e '&o+"& +e '&'~'&) ]/~, ~, '

+-'[t(k k')+~(e "o-"'&+e'" ')]/(u (u '.

(12)

(13)

We construct a wave function Q„fz(k) p z(k) and demand that it be an eigenstate of ~ (within the defect
subspace) with eigenvalue E, + ~, which leads to the Schrodinger equation

(& —~+ —~ )fz(k) =(16/9~)&u+~ Pfz(k')[ho(k', k) —eq y q(k', k)]. (14)

The scattering states are obtained by ignoring
the right-hand side and the bottom of the scatter-
ing continuum is given by'J'(-, —2~cosQ~) leading
to a. gap in the spectrum at Q =0 of magnitude
J/2. The wave functions for the scattering states
correspond to weakly interacting defects and

hence the spectrum has a fourfold degeneracy
(three states of spin one and one singlet). We
have also studied the possibility of bound states
in Eq. (14) numerically. The result of the compu-
tation is shown in Fig. P,. It is seen that the
bound state emerges from the continuum at Q
=0.36m and reenters at Q =0.64m. The dotted
line corresponds to a variational estimate' of the
fourfold degenerate bound state e =2Jo (indepen-
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FIG. 2. Excitation spectrum at the point 0. Shaded

region is the scattering continuum. The dotted line is
the variational bound state and the dashed line is the
continuation of the scatte ring continuum thres hold.
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FIG. 3. Low-temperature susceptibility compared
with the result of a twelve-spin chain.
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dent of Q).
At sufficiently low temperatures, we expect the

EE to play an important role in determining the
thermodynamic properties. The bound state
occurs at energies above the gap and, hence, we

may expect the scattering states to dominate the
response. We thus assume that we may create
2, 4, 6, . . . propagating and noninteracting well-
separated defects at finite temperatures. In the
presence of a magnetic field the defects behave
as essentially free spin-~ particles and, hence,
their energy is &u(k) —bs', where b =2p~B,~
( p, 8 ls the Bohr magneton). A simple calculation
gives the susceptibility y in terms of Y (-=4/k~ T)
as

gJ/8MpB~=(0. 25Y) exp(-1.25Y)I,(Y), (15)

where I, is a Bessel function. In Fig. 3, we com-
pare Eq. (15) with the numerical results on finite
chains of twelve spins.

It is clear from Fig. 3 that the theory presented
in this Letter provides a quantitative explanation
for the numerical results based on an appealing
physical picture. It has been suggested previous-
ly' that this system may support gapless modes.
We feel, however, that the evidence points to-
wards a finite gap; in fact, the gap we find (8/2)
seems to lie lower than the lowest spin-one
states for a twelve-spin chain. Also, the finite-
chain susceptibility resembles that of the aniso-

tropic Heisenberg chain rather than the isotropic
(gapless) case. Finally we observe that the de-
fect picture is applicable to the lines OB and OC

too but in this case the defects interact (and pre-
sumably bind) strongly (one-dimensional Coulomb-

like).
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