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First-Order Phase Transition in Four-Dimensional SO(3) Lattice Gauge Theory
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We present Monte Carlo evidence of a first-order phase transition in four-dimensional
SO(3) lattice gauge theory. This result stands in sharp contrast to the known single-phase
structure of the corresponding SU(2) theory, and suggests that the &~ center degrees of
freedom may be important to the thermodynamics of the SU(2) gauge system.

PACS numbers: 11.10.Np

One of the major advantages of the lattice regu-
larization of continuum gauge theory is that con-
finement can be understood as a property of the
strong-coupling (or "high-temperature"), dis-
ordered phase of the gauge system. However,
according to asymptotic freedom, g'-0 in the
continuum limit; so the problem is to show that
the "high-temperature" property of confinement
persists in the "low-temperature" region down
to g' = 0. The extrapolation of strong-coupling
properties into the weak-coupling regime is pos-
sible if there is no phase transition separating
the strong- and weak-coupling regimes, and this
is the motivation for studying the thermodynamics
of lattice gauge systems. The numerical results
of Creutz' and Lautrup and Nauenberg' are strong
evidence of the absence of any phase transition
in four-dimensional SU(2) lattice theory.

It is natural to think that the absence of phase
transitions in the SU(2) theory can be generalized
to lattice theories with any continuous non-Abelian
gauge group. However, the essential mechanism
which frustrates a phase transition between the
strong- and weak-coupling regimes in SU(2) is
not really understood at present, while phase
transitions have in fact been observed in certain
other four-dimensional lattice gauge systems.
Mean-field theory, for example, predicts the
occurrence of first-order transitions in gauge
systems, ' and these are known to occur for four-
dimensional lattice theories with some finite
gauge groups. ' Compact U(1) gauge theory seems
to have a second-order transition in four dimen-
sions. ' Even in the SU(2) ease, the specific heat
has a sharp peak in the crossover region'; so it
seems that there is "almost" a phase transition
in the crossover region. One would like to some-
how isolate the degrees of freedom in the SU(2)
theory which prevent this transition from actually
occuring. Now it is widely believed that topolog-
ical configurations associated with the gauge-
group center are responsible for confinement in
the SU(2) weak-coupling regime'; so it might also

be true that the Z, center degrees of freedom are
crucial to the SU(2) thermodynamics. ' It is this
conjecture which has motivated us to study, by
Monte Carlo techniques, the thermodynamics of
a theory with a trivial group center, namely,
four-dimensional SO(3) lattice gauge theory.

SO(3) lattice theory can be expressed in terms
of integrals over the SU(2) group variables, how-
ever, the action is expressed as a trace in the
adjoint, rather than the fundamental, representa-
tion of SU(2):

Z=JgdU~e PS~,
l p

s, = x&( g, )&x&(1)

= -' [Xs'(gp) —1)
= 4[tr(UUU Ut)' —1],

where the link variables U, are SU(2) matrices,
and the x„,xr are traces over the SU(2) group
variables in the adjoint and fundamental repre-
sentations, respectively. It should be noted that
in SO(3) lattice gauge theory, in fact in any lattice
gauge theory with a trivial center, quark color
always can be screened by glue, i.e., a quark
can bind with gluons to form a color singlet.
Hence the Wilson loop must always follow a pe-
rimeter law even at strong couplings, and the
strong-coupling (or "disordered" ) phase of such
theories corresponds to color screening, rather
than quark confinement per se.' The same color
screening effect would occur in an SU(N) gauge
theory with quarks in the adjoint representation.
But the more interesting distinction between SU(2)
and SO(3), apart from their available quark rep-
resentations, is the fact that SO(3) cannot dis-
tinguish between link variables U and -U; this
means, for example, that a "thin fluxon" con-
figuration in SU(2) is indistinguishable from
vacuum in the SO(3) theory Conceivably, . this
loss of Z, degrees of freedom in the SO(3) theory
could affect the thermodynamics so severely
that a phase transition between strong and weak
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FIG. 1. The plaquette energy E& as a function of P.
The solid lower curve is a plot of the high-temperature
expansion
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FIG. 2. SO(3) hysteresis curve in the plaquette ener-
gy E&, taken from step-mode Monte Carlo runs with 100
ite rations for each datum point. Points repre sen ted by
trian. gles were taken from hot starts; circles represent
cold starts.

and the upper solid curve is a plot of the low-tempera-
ture expansion E& = 1 —4P
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couplings would occur. Using Monte Carlo meth-
ods on a 3' lattice, we have in fact found such a
tr ansition.

In Fig. 1 we show our results for the mean
plaquette energy E~= &S~) as a function of P=3/
2g'. This Monte Carlo data can be compared to
the high- and low-temperature expansions for E~,
which are also plotted in Fig. 1. There is a very
strong signal of a phase transition at P= 2.48,
where E~ makes a sudden jump from E~= 0.43 to
E~ =0.60 in a region of bP =0.01. The only ques-
tion is whether this is a first- or second-order
transition. We conclude that it is a first-order
transition because, to the limits of our computer
data, there is a discontinuity between the upper
and lower branches of the E~ curve. We were
unable to resolve any intermediate points in the
transition region. After 3000 iterations at the
transition temperature P = 2.48, a Monte Carlo
run with a cold start gives a data point on the
upper branch of the curve, while a run at the
same temperature with a hot start gives a data
point on the lower branch. We have also run the
Monte Carlo program in step mode with only 100
iterations per step and obtained the hysteresis
curve of Fig. 2, which again shows a very pro-
nounced two-phase structure. Practical con-
straints on computer time did not allow us to

determine the normalized specific heat

'(8~, /ee)

=P(&S,S, .&- &S, ) &S, &)/(&S, ')- &S, &') (2)

with much reliability; we can only report that in
the data available to us, in 34 as well as 4' lat-
tices, the specific heat does not show any clear
sign of forming a sharp peak, which would be
characteristic of a second-order transition, and
so this data seems consistent with a first-order
transition. We have also seen, in the neighbor-
hood of the transition point at P=2.48, that the
lattice system will remain in the metastable
phase for hundreds of iterations, and then sudden-
ly jump to the stable phase during. the Monte
Carlo run, which again is evidence of a well-
separated two-phase structure. It is interesting
to note that the first-order transition in SO(3)
and the peak in the speeifie heat occurs at rough-
ly the same value of P (P = 2.48 and 2.2, respec-
tively). On the other hand, as a function of g2,
the SO(3) transition and SU(2) peak well sepa-
rated. In Fig. 3 we have plotted the SU(2) and
SO(3) plaquette action densities as a function of
g2, and on this scale the SO(3) transition seems
very precocious.

We conclude that since the SO(3) gauge theory in
four dimensions has a phase transition while the
SU(2) theory does not, the center degrees of
freedom could well be responsible for the dif-
ference in the thermodynamics of these very
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be given in a subsequent paper. '
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FIG. 3. The plaquette action densities plotted as a
function of g . The action densities are o'. =4-2 try
for SU(2), and =2 —2 trg for SU(3). In the weak-
coupling limits the two groups must agree with each
other for the case of the action density.

similar systems. It is also of interest that we
now have an example of a continuous gauge group
in four dimensions which, like some finite groups,
undergoes a first-order phase transition as pre-
dicted by mean-field theory. In fact, a naive
mean-field calculation by the Weiss self-con-
sistent method gives a value P, = 2.59 for the
transition point, which is not far from our ob-
served value P, = 2.48. Further applications of
mean-field methods to lattice gauge theories will
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