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The conductance for a two-dimensional tight-binding model with on-site disorder is
calculated numerically with use of the Kubo formula. For weak disorder logarithmic
localization is observed, in agreement with the scaling theory. The magnetoresistance
is found to be negative in both the logarithmic and exponential localization regimes.
g,esults for a model with random complex hopping matrix elements are also presented.

PACS numbers: 72.10.8g, 71.55.Jv

In the last two years, significant advances have
been made in understanding the scaling behavior
of Anderson localization. " Much of the work has
been based on the idea' that the behavior as a
function of length scale L is determined by a
single scaling variable, the dimensionless con-
ductance at scale L, g(L) = I'(L)/(e'/R), where
I'(L) is the conductance of a system with linear
dimension L. The renormalization-group differ-
ential recursion relation which describes the
changes in g as a function of length scale can be
written as ding/dlnL = P(g). The P function has
been computed in two dimensions by perturbation
theory in powers of g ' for weak disorder. For
spinless electrons it is found' that P(g) = -(2v'g) '
+O(g ~) where the absence of the zeroth-order
term is unique to two dimensions (2D) and sug-
gests that two is the lower critical dimensionalityI

for the Anderson transition. In 2D, localization
is predicted for any amount of disorder, since g
always decreases as a function of L correspond-
ing to insulating behavior. For weak disorder,
however, the effects of localization will only de-
crease g(L) logarithmically.

Numerical tests of these ideas have so far been
based on rather small sample sizes and are not
conclusive. ' ' In particular, an approximate nu-
merical study of the scaling behavior by one of us'
failed to show the expected logarithmic localiza-
tion in 2D. More recently several other approxi-
mate numerical calculations have come out in
support of the one-parameter scaling theory. '"
The present work is aimed at helping to resolve
the controversy.

We consider a tight-binding Anderson model on
a 2D square lattice,

j+1,k Qj,k + Vy +j k+3 Q~ k + C, C ~ +~E~dk

jsk j,k

where j and k label the sites in the x and y directions and E,k is a random site energy distributed uni-
formly between aW/2. We initially take V„= V, =1. The parameter W thus provides a measure of the
disorder. The frequency-dependent conductance of an LXL sample is given by the Kubo formula

I'(~) =(~/~L')J dE'2 IZ &o'I J( j) I P) I'&(&'+~ -&s) &(&'-E ), (2)

where the current operator is J(j) =ieP~ V„' (a, „ta, » —c.c.) and Iu), I P) are the eigenstates of the
system with E &E &EB, where E is the Fermi energy. For an isolated sample the eigenvalues are
discrete and I'(~) consists of a series of 5 functions so that some procedure for averaging over ~
must be introduced. '" Furthermore the numerical computation of the current matrix elements is
time consuming. We thus take a somewhat different approach by extending the disordered sample to
infinity in the +x directions by affixing an ordered tight-binding lattice on each side. We take periodic
boundary conditions in the y direction for all x, and apply an electric field in the x direction only in
the disordered region. The energy spectrum will now be continuous and the ~ -0 limit of the conduc-
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tance can be taken. Current conservation immediately implies that the matrix element (n( J(j) ~ p) is
independent of j. The sum over j in Eq. (2) is hence trivially done.

We introduce the Green's function G ' =(E H-+&q) ' and 2iG" =G ~ - G . Defining I = I'(&v=0),
Eq. (2) simplifies to

I' = (e'/~) Tr(G"(j,j ') G"(j ' —1,j, —1) + G"(j —1,j ' —1)G"(j ', j )

—G "(j„j,' —1)G"(j,', j,—1) —G"(j,—1, j, ') G"(j, ' —1,j,) ], (3)

where the trace is over the site index A and the

j„j,' are arbitrary. For j, and j,' chosen to be
on opposite sides and far away from the disor-
dered region we have shown elsewhere" that Eq.
(3) is equivalent to

I =(e'/2') Tr(t 't), (4)

=(@Le'/2~n)P. „[t., i'exp(i(u Q~ /~. —i~t),

where v, is the velocity in channel a. This gives
rise to density fluctuations that must be screened
out in a charged system. It has recently been
shown"' that in the single-channel case, appli-
cation of a spatially uniform out-of-phase field
in the wire produces a uniform total current so
that the Landauer formula I' = (e'/2~5)

~ t ~'/(1
—

~
t ~') is obtained. It is unclear at present how

to generalize this result to many channels (i.e.,
a finite-width strip) but the expectation is that in
the limit of large channel number the correction
to Eq. (4) will be small.

We compute the Green's functions by a recur-
sive method" which builds up the sample in the
x direction one column at a time, starting from
the left with a system in which all sites j)jo are
deleted. The Green's function G~( j,) -=G». (j„j,)
for the last column obeys the matrix recursion

where I; is the transmission matrix relating in-
coming waves on one side of the disordered re-
gion to "transmitted" waves on the other side.
One can compute I; using a transfer-matrix tech-
nique which is in principle more efficient than cal-
culating the Green's functions in Eq. (3) (the
cost is o'L' vs L'), but the matrix inversion
necessary to obtain f rapidly becomes singular,
limiting this method to relatively small L, but
providing a useful check to the calculations de-
scribed below.

We should mention a shortcoming of our choice
of boundary condition. By applying a field, E,
only in the disordered region a current is gen-
erated in the ordered "wire" that is spatially
nonuniform, i.e.,

relation

G'(j.) =lG'(j.)-'- V. 'G'(j. —1)]-',
where G'( j,) is the Green's function for the iso-
lated joth column. Similarly we introduce G (j,)
as the first-column Green's function for a sys-
tem in which all sites j &j, are deleted. It is easy
to show that

G(j, j)

= [G'(j) ' —V.'G'(j +1) —V. 'G'( j-1)] ' (6)

and G( j, j+1) = G( j, j)V„G (j+1). We have as-
sumed V„ to be a constant in the above discus-
sion, but this condition can easily be relaxed.

Initially G is computed for a semi-infinite sys-
tem of a perfect lattice and then, by repeated use
of Eq. (5), G is computed for the left-hand side
plus the disordered region. Finally another semi-
infinite perfect system is attached to the right
with use of Eq. (6). The conductance is then cal-
culated from Eq. (3) with j,=j,' just outside the
disordered region.

The logarithm of the dimensionless conductance
is computed for M different samples with fixed
R" and E. The mean lng and the rms deviation
4lng are then calculated with typically M = 200
for A=16 and 32 and M=100 for L=64. The re-
sults for 8'=4, E = 0 (band center) are shown in
the inset in Fig. 1. The error bars are statisti-
cal, given by +(King)/v'M. We see that Ing de-
creases upon doubling of L in at least qualitative
agreement with the logarithmic localization pre-
dicted by the scaling theory. For the same value
of W, the previous calculation by Lee' showed
metallic behavior, i.e., lng independent of L.
That calculation was approximate in that the
basis set was truncated with each doubling of L,
and can be viewed as an approximation valid for
strong disorder. Apparently systematic errors
were sufficiently large at %=4 to produce the
wrong answer. It is worth noting that Stein and
Krey' computed the conductance using the Kubo
formula for isolated samples and obtaining lng
=-1.65 for 8"=4 independent of I.. Due to var-
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FIG. 1. Numerically calculated scaling function for
the Anderson model showing the dependence of the
logarithm of the conductance g on length scale I-.

ious approximations their calculations are effec-
tively cut off at relatively small L, so that the
agreement with the present result is reasonable.
We further note that Eq. (4) most likely under-
estimates the conductance and requires correc-
tions of order f/L (l is the mean free path) to
account for boundary resistance and the effects
of current in the perfect regions. Since these
corrections would probably lead to smaller un-
derestimates of the conductance for larger sys-
tems, we believe that our observed decrease in
lng with increasing L is a slight underestimate.

By calculating the differences lng(2L) —lng(L)
for various values of 8' we construct the numer-
ical scaling function shown in Fig. 1. Note the
similarity between the data for E =0 and 1. The
open symbols are obtained from L =64 and I = 32
samples and are quite consistent with the per-
turbative result P=(2~'g) '. The solid symbols
are from L = 32 and L = 16, and may overesti-
mate P for the reasons discussed above, espe-
cially in the large-g limit when l /I. is large.
These corrections appear to be small for lng
6 -3.

It has been shown that the leading logarithmic
divergence in perturbation theory is destroyed
by terms in the Hamiltonian which break tirne-
reversal symmetry, such as spin-flip scattering"
or a magnetic field. " There is a disagreement
on the next leading term which either vanishes"
or is given by p(g) = -2/(4v'g)'+0 (g ')." To test

FIG. 2. Scaling function for the Anderson model with
random complex hopping matrix element.

this ease we have performed calculations with
V„=1 and V, '"=exp(i6,„), where 8,~ is a random
phase. " The results for purely off-diagonal dis-
order, 8"=0, are shown in the inset in Fig. 2.
The increase in g between L =16 and 32 may be
due to finite-size effects. Comparison with the
inset in Fig. 1 shows that the two cases with
similar g show very different scaling behavior.
A scaling function is constructed as before and
shown in Fig. 2. Again the open symbols which
are obtained from scale changes between L = 32
and 64 are consistent with the perturbative re-
sult. The uncertainties in our computation are
such that we cannot hope to distinguish between
a smooth nonzero P function and the existence of
a line of fixed points, but it is clear that the
complex hopping case is described by a very dif-
ferent P function than the real hopping case.

Lastly, we present some calculations of rnag-
netoresistance. A uniform magnetic field B nor-
mal to the plane can be introduced by taking V„

=], and V, ~'=exp(iBj) in Eq. (1), where B is meas-
ured in units of kc/a'e (a is the lattice spacing).
The results for W=4 are shown in Fig. 3(a). For
a given L we observe a negative magnetoresis-
tanee. For a sufficiently large field we find that
the logarithmic localization is destroyed. The
conductance change for B=0.1 as L varies from
16 to 64 is similar to the complex hopping case.
This is again consistent with predictions based
on the perturbation theory. " Interestingly the
negative magnetoresistance persists into the
exponentially localized regime as shown in Fig.
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ments.
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FIG. 3. Conductance vs magnetic field B measured
in units of kc/ea2.

3(b) for W=8. This suggests that the localization
length increases with increasing magnetic field.
We speculate that this occurs when the Landau
radius (eB/Kc) ' ' becomes comparable with the
localization length. Apparently the time-reversal-
noninvariant nature of the magnetic field delocal-
izes the electrons.

Experimentally a negative magnetoresistance
has been observed in metal-oxide-semiconductor
field-effect tr ansistors" "in the low-field re-
gime and in clean copper films'4 but not in alloy
films. "'" Note that a theory based on electron-
electron interactions"" predicts logarithmic
corrections to the conductivity similar in form
to the localization theory. A negative magneto-
resistance is, however, probably the best indica-
tor of the presence of localization effects, since
the interaction theory predicts only positive mag-
netoresistance. " It appears that a theory that
takes into account both localization and interac-
tion effects as well as various symmetry-break-
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