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Electronic Properties of Flat-Band Semiconductor Heterostructures
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A new theory of the electronic properties of heterostructures is proposed. Linear
combinations of Bloch waves, both propagating and evanescent, are matched across
the interface. This leads to simple continuity conditions on the envelope functions,
which can be used to solve any heterostructure problem. Calculated optical transitions
in GaAs-AlGaAs and InAs-GaSb heterostructures show good agreement with experiment.

PACS numbers: 73.40.Lq, 73.90.+f

A superlattice of alternating layers of two semi-
conductors can now be fabricated. " The theory
of the electronic properties of these systems may
be approached in two complementary ways. First-
principles band-structure calculations, ' ' treat-
ing atoms in two dissimilar layers as constitut-
ing a supercell, can handle layer thicknesses up
to a few atomic planes without exceeding present-
day computer capacity. For thicker layers, an
effective-mass approach becomes pref erable. "'
Ea,ch layer behaves like a macroscopic crystal,
modified at most by a slowly varying potential.
The wave function is an amplitude modulation of
a Bloch wave with the envelope governed by a
Schrodinger-like equation. The major problem
is joining the solution from layer to layer.

The most naive approach makes the envelope
function and its derivative continuous across the
layer interface. This appears to work quite well
for certain type-I superlattices, e.g. , GaAs-
AlGaAs, in which the respective conduction and
valence-band edges are close in energy. ' For
type-II superlattices, e.g. , GaSb-InAs, in which
the valence-band edge of one semiconductor is
above the conduction-band edge of the other, this
approach to envelope-function matching is com-
pletely meaningless. '

We report here a theory in the effective-mass
genre. The amplitude modulation is extended to
include both conduction and valence bands in the
same energy range for the whole heterostructure
by using Kane's three-band Hamiltonian. " There
are evanescent waves which decay away from the
interface so quickly that they do not contribute to
the effective-mass wave function. They do play
an indispensable role in matching the wave func-
tion and its normal derivative at the interface. "
The conditions for joining the envelope function
in the bulk of one layer with that in another layer
are derived. They turn out to be remarkably sim-
ple and are very useful as boundary conditions
for the envelope functions.

For simplicity, take the wave vector normal to
the interfaces. Then the Kane Hamiltonian" de-
couples into a single band for the heavy holes and
a 2& 2 k ~ p Hamiltonian for the conduction and
light-hole valence bands:

E +Ak
'pa

Pk
E, -Ak

We call these branches the "middle" bands. They
include the conduction and light-hole valence
bands, where 0 is real, and the evanescent states
in the gap, for which k is imaginary.

Consider an ideal interface between two semi-
conductors at the plane z =z,. To match the wave
function across the interface, we need to relate
the two basis functions on the left to those on the
right. Two assumptions are made to establish a

where k is the wave vector and E, and E, are the
conduction and light-hole band-edge energies. P
is the momentum matrix element between the con-
duction and light-hole valence bands. E, -E, and
P are fitted to the known bulk band structure.

A is a positive parameter which represents
schematically the effects of bands not represent-
ed in the basis for the Kane Hamiltonian. We in-
troduce these terms so that the effective-mass
equations retain the character of second-order
differential equations. This makes the wave func-
tion and its normal derivative continuous across
an interface. To recover the Kane model, we let
A - 0 after establishing the boundary conditions.
A is in fact small for all materials of interest.

For smallA, at a given energyE, two of the
wave vectors, which correspond to evanescent
waves, become very large. We denote these by
A -~iP/A, and call these branches of the wave
vector the "wing" bands. The other two wave vec-
tors reduce to the usual two-band result. We de-
note these by
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simple relationship. The first is that, in each
material, the two basis functions are linearly in-
dependent functions of x and y at z =z,. This is
true for all tetrahedral crystals because these
two functions of x and y do not belong to the same
irreducible representation of the two-dimension-
al space group of the interface. The second as-
sumption is that, for allx andy at z =z„ the cor-
responding conduction band-edge wave functions
from the two materials, and their normal deriva-
tives, are equal, and similarly for the light-hole
band-edge wave functions. ,Examination of the
pseudopotential representation of these basis
functions justifies this approximation. "'"

Express the wave function at energy E in terms
of an incident wave from the "middle" bands of
the material on the left, and reflected and trans-
mitted waves in the "middle" and "wing" bands.
The two reflection and two transmission coeffi-
cients are determined by the continuity of the
wave function and its normal derivative. In
terms of the basis of the two-band model, these
continuity conditions yield four boundary-condi-
tion equations. In the limit that A - 0 uniformly
in both materials, the evanescent waves from the
"wing" bands are vanishingly small everywhere
except at the interface. So, away from the inter-
face, the total wave function may be written as a
linear combination of scattering functions which
exclude the waves from the "wing" bands. This
can be written as

q(r) =F, (z)u, (r)+F, (z)u, (r).

I', and I', are envelope functions which modulate
the Bloch basis functions u, and u, . Two of the

. Pi(kr) cot(,'k a)—
'L

P, (k, ) —tan(-,'k, a) (4)

for symmetric (antisymmetric) conduction-band
and antisymmetric (symmetric) light-hole-band
envelope functions. k is the wave vector from
Eq. (2). Subscripts I and 0 refer, respectively,
to the inside and outside materials of a sandwich
of layer width a. The quantity

e(k) =~(k).(~ -F-, )l S-F.)l(E-~, ) I'"

is the ratio of the coefficients of the eigenfunction
of Eq. (1) at energy F, and o(x)=-x/ixi.

Using the material parameters in Table I, we
have calculated optical transition energies as a
function of sandwich layer thickness for a GaAs-
Al, ,Ga»As sandwich. The results are shown in
Fig. 1, along with the experimental values. ' Us-
ing 4E, =E,o -E„as an adjustable parameter,
we find a good fit for AE, =225 meV, which is
the same value as obtained from the square-well

four boundary-condition equations turn out to be
independent of the wing-band components in this
limit, and are equivalent to the continuity of
F,(z) and F, (z) at z, . (Their z derivatives are
not, in general, continuous! ) The other two equa-
tions, which determine the wing-band compo-
nents, become irrelevant. Thus the continuity of
the two envelope functions replaces the continuity
of the total wave function and its derivative as the
appropriate boundary condition for heterostruc-
ture problems.

Using the new two-component boundary condi-
tions, the eigenvalue equation for the bound states
of a sandwich heterostructure can be found:

TABLE I. Material parameters used in calculating
optical transition energies.

Material

GaAs
A10. 2Ga0. 8AS
GaSb
InAs

Z, (eV}

1.511
1.770
0.810
0.420

m {m0)

0.067

0.042
0.023

mq (m0)

0 ~ 45
0.5524
0.431
0.396

0
0
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'Ref. 1.
Weighted average of AlAs heavy-hole mass in H. C.

Casey, Jr., and M. B. Panish, Heterost~e', ure I.asers
Part B: Materials and OPerating Characteristics
(Academic, New York, 1978), p. 12, and GaAs heavy-
hole mass in Ref. 1.

'Casey and Panish, Ref. b.
From Casey and Panish (Ref. b) with use of mz 3

mm

FIG. 1. Optical transition energies vs sandwich lay-
er width for GaAs —A10 26a0 8As sandwich. Data are
from Ref. 1. Transitions between the light-hole and
conduction bands: open circles, experiment; dashed
lines, theory. Transitions between the heavy-hole and
conduction bands: solid circles, experiments; solid
lines, theory. Weak transitions between the n = 2 light-
hole state and then = 1 conduction state: squares, ex-
periment; dotted line, theory.
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model. ' The differences between Eq. (4) and the
square-well model are masked by the large con-
tribution of the band gap to the transition energy.
In terms of energy values measured from the
band edges, our results are systematically low-
er than the square-well model by 6% to 10%%uq.

More accurate measurements would be needed
to see such discrepancies. Neglecting these dif-
ferences, our theory provides a theoretical justi-
fication for the square-well model in certain
type-I cases.

The eigenvalue equation for a superlattice with
layers of width a and b is

R = (P +DPQ+Q )/(1+DPQ +P Q )) (6)

where P =i tan( —,'k,a), Q =i tan(2k, b), R =i tan[ —,'k (a
+b)], D = [p, (k,)/p, (k,)]+[p,(k,)/p, (k,)], and k is
the superlattice wave vector.

For homojunctions, if the energy is close to a
given band edge in both materials, Eqs. (4) and
(6) reduce to the eigenvalue equations derived
from the square-well model. ' Our theory does
not reduce to the one-band model, ' nor to the
square-mell model, ' for heterojunctions, where
simply matching the envelope function and its de-
rivative is invalid.

Calculations of the optical gap as a function of
superlattice layer thickness were performed with
the material parameters from Table I for an
InAs-GaSb superlattice, a type-II structure. The
results are shown in Fig. 2, along with the opti-
cal data. " We obtain a good fit of the optical da-
ta with a value of E,=E ~A, —E) G,sI,

= —175 meV,
which is slightly larger than that given by the
linear combination of atomic orbitals (LCAO)
theory. '4

0.5
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0 20 40 60 80 l00
LAYER WIDTH (A)

FIG. 2. Optical gap vs layer width for an InAs-GaSb
superlattice. The transition is from the highest heavy-
hole —like miniband mmdmum to the lowest conduction-
like miniband minimum. Data are from Ref. 14. The
solid line is our result. The dashed line is the tight-
binding result from Ref. 6.

This superlattice system exhibits a semicon-
ductor-to-semimetal transition at the interfaces
for a =b = 80 A.""We interpret this as the point
at which the optical gap goes to zero. Our theory
is in excellent agreement with the location of this
transition, even though its value depends very
sensitively on the value of E,. In contrast, the
LCAO result is 115 A. '

We made several simplifications to illustrate
our wave-function matching method. The method
may be used with a more general bulk band struc-
ture, in which limits like A - 0 are not necessary,
or in systems with many electrons in the sub-
bands, which cause the addition of a self-consis-
tent potential. Such systems include modulation-
doped superlattices, "isolated heterojunctions, "
and the semimetallic interface phase of type-II
superlattices. ""For such systems, self-con-
sistent calculations based upon an extension of
this work are currently in progress.

This work was supported in part by National
Science Foundation Grant No. DMR 80-018440.
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The conductance for a two-dimensional tight-binding model with on-site disorder is
calculated numerically with use of the Kubo formula. For weak disorder logarithmic
localization is observed, in agreement with the scaling theory. The magnetoresistance
is found to be negative in both the logarithmic and exponential localization regimes.
g,esults for a model with random complex hopping matrix elements are also presented.

PACS numbers: 72.10.8g, 71.55.Jv

In the last two years, significant advances have
been made in understanding the scaling behavior
of Anderson localization. " Much of the work has
been based on the idea' that the behavior as a
function of length scale L is determined by a
single scaling variable, the dimensionless con-
ductance at scale L, g(L) = I'(L)/(e'/R), where
I'(L) is the conductance of a system with linear
dimension L. The renormalization-group differ-
ential recursion relation which describes the
changes in g as a function of length scale can be
written as ding/dlnL = P(g). The P function has
been computed in two dimensions by perturbation
theory in powers of g ' for weak disorder. For
spinless electrons it is found' that P(g) = -(2v'g) '
+O(g ~) where the absence of the zeroth-order
term is unique to two dimensions (2D) and sug-
gests that two is the lower critical dimensionalityI

for the Anderson transition. In 2D, localization
is predicted for any amount of disorder, since g
always decreases as a function of L correspond-
ing to insulating behavior. For weak disorder,
however, the effects of localization will only de-
crease g(L) logarithmically.

Numerical tests of these ideas have so far been
based on rather small sample sizes and are not
conclusive. ' ' In particular, an approximate nu-
merical study of the scaling behavior by one of us'
failed to show the expected logarithmic localiza-
tion in 2D. More recently several other approxi-
mate numerical calculations have come out in
support of the one-parameter scaling theory. '"
The present work is aimed at helping to resolve
the controversy.

We consider a tight-binding Anderson model on
a 2D square lattice,

j+1,k Qj,k + Vy +j k+3 Q~ k + C, C ~ +~E~dk

jsk j,k

where j and k label the sites in the x and y directions and E,k is a random site energy distributed uni-
formly between aW/2. We initially take V„= V, =1. The parameter W thus provides a measure of the
disorder. The frequency-dependent conductance of an LXL sample is given by the Kubo formula

I'(~) =(~/~L')J dE'2 IZ &o'I J( j) I P) I'&(&'+~ -&s) &(&'-E ), (2)

where the current operator is J(j) =ieP~ V„' (a, „ta, » —c.c.) and Iu), I P) are the eigenstates of the
system with E &E &EB, where E is the Fermi energy. For an isolated sample the eigenvalues are
discrete and I'(~) consists of a series of 5 functions so that some procedure for averaging over ~
must be introduced. '" Furthermore the numerical computation of the current matrix elements is
time consuming. We thus take a somewhat different approach by extending the disordered sample to
infinity in the +x directions by affixing an ordered tight-binding lattice on each side. We take periodic
boundary conditions in the y direction for all x, and apply an electric field in the x direction only in
the disordered region. The energy spectrum will now be continuous and the ~ -0 limit of the conduc-
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