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Renormalization-Group Method for Vibrational Behavior in Mixed Diatomic Crystals
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The renormalization-group method has been applied to investigate vibrational proper-
ties of a diatomic mixed crystal. It has been found that there exists a fixed point which
separates the one-mode behavior from the two-mode behavior. This transition depends
on concentration, force constants, and mass ratios.

PACS numbers: 63.20.Dj, 63.50.+x

It has been shown that a fixed point exists which
separates the extended mode behavior from a
localized one which is interpreted as a transition
from the one-mode to two-mode behavior.! Sev-
eral models have been developed in order to find
a criterion which separates the one-mode behav-
ior from the two-mode one.’ Among these the
coherent-potential approximation (CPA),? the
modified random-element-isdédisplacement model,
(MREI),? the # -0 trick,* and the recursion meth-
od® have been applied. We propose here a new
criterion based on the renormalization-group®
(RG) method, which is in agreement with experi-
mental’ work and also with existing criteria®2
(Fig. 1).

Our RG transformation consists in comparing l

the eigenvalues, coupling constants, and probabil-
ity distribution of the initial lattice with those of
a new one of spacing S (S>1) times larger than
the original. We choose to describe the given
chain of atoms with randomly distributed masses
my and m first as a chain of cells with two at-
oms, and afterwards as a chain of cells of four
atoms. We are interested in the long-wave opti-
cal mode. Therefore, after computing the eigen-
value and the eigenvector for each basic cell, we
preserve only the long-wave optical phonons,
drop out the acoustical mode, and obtain our ini-
tial Langrangian with S=1 which is given in Eq.
(2d). Then we will write the coupling between at-
oms in different cells as a coupling between cells.

The Lagrangian of the chain of two-atom cells
is given by

£o=2[(€,7=2)x,2+ (7 = 2)x,% + 4w, %, |+ wy(5 — ) + 2 [+ 7, =

where

r=w?/(K,"/my), €=myll)/m,, 1=1,2,3,

w is the frequency, m , is the constant mass, and m,(l) is m 45 with probability z and m . with probabili-
ty 1 —z. [€, takes two values; my/m, =€, mg/m =€(l~0) with 0<56<1,]
We have two mass configurations, o, = {mB, mA} and 0, = {mc, mA}, and, respectively, two eigenval-

ues, 7, and 7,, and two eigenvectors, ¥o, and ¥o0,:

7, =2(1+ €)/€, Wo,=(1+€?) V2 (x ~ex,); (2a)
7,=2[1+€(1-98)]/e(1=0), ¥o,=[1+€*(1=0)*]"2[x —€(l-0)x,). (2b)
The probability distribution of the eigenvalues is
P('V)=ZG,1,2+(1—Z)6,1,2. (2¢)
The nondiagonal term written using Egs. (2a), (2b), and (1) becomes
© M2 N
L= E {E[’r_vo(a‘)]\liz(a)*"tc,o'a' a+1\1’(a)\1“(a+1)}~ . (2d)
a=1

a is the cell index, v(a) is the diagonal term depending on the configuration, and ¢, ., **“*' is the
coupling term between the cells « and a +1 which depends on the configuration o,, 0,.
The Lagrangian given in Eq. (1) is then written in a form of four atoms per cell and is given by

Lo=2[(€,7=2)x.2+ (7 = 2)x,% + (€7 = 2)x,” + (7 = 2)x,% + 2%, X, + 2X, X5+ 2X,%, + 2, %, |

+x4(x5—x1)+%[“-. (3)
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We have now four configurations:
g, E{ml zmssz}Q 0'2.=-{m1 :mszmc}; 035{m1 =mpg; m3=mc}; 045{’"1 =Mme; m:;:ms} .

In order to perform our RG transformation we are going to keep, in the four-atom cell, only the
mode corresponding to the configuration of two optical modes in the two-atom cells. This choice cor-
responds to calculating the optical mode from the two optical modes in the two-atom cells. The spac-
ing of the new problem is S=2. We obtain the following configurations for the chosen optical mode:

7,=2(1+€)/e, o, =[2(1+€2)]V2(x, - €Xy+ Xy — €X,); (4a)

7_2[1+€(1—5)] %, — €(1 = 0)x, +x, — €(1 = d)x,

ST @18 0 YR T e eX1- oV ; (4p)
_[_2=9% 2-5 2 €+1-%2e5\1/2
(et ) [ (dey) - (=)
(4c)
Vo, =(1+a%+20%) 'l/z(axl +bx, + X5+ bx,), a=1+€dr,/(2-74€), b=1- %673(1 -~ 0);
Vy=7,, WO, =(1+a>+2b%) V4 x, + b, +ax,+bx,). (4d)
The probability distribution in this case is given by
P/(r')=2%6,,, +(1- 2)2571.1-2 +2Z(1- Z)ﬁ,.,,3+ Z(1-2)0,.,,. (4e)
As in the case with two atoms we obtain
/2
£'= L[z =vo (@) H)+(2) g, 60" T (@) (@)]. (4f)
a=1

We replace7 to,o'a' “*!and (t')c,o'a' axt by teffa’a+1 =< l to,o'a'a+l | >p and (t')effa'OHl = < l(t,)o,o'a'a+l
X |)pr. By replacing £, 5,***! by fes;, the randomness in the Lagrangian is reduced so that the “true”
randomness is probably larger than what our estimate will yield. Computing ¢.;; and ¢.¢; we obtain

pos €(2-06)z(1 - Z) € €(1-06)2(1-2)
eff “T11 e2(1 = 0%)|72(1+ €%) 1+ €2 1+eX(1-0) °

¢ ,_[ 2labl+21b | . €(1-0)+¢
eff "I\ T+a?+20%  2(1+€®)7?[1+ (1 =062

21b1+€(lal+1)
(1+a®+2b6%)2[2(1 + €?)]

Z% + (5a)

2 2 € 4
)Z (1-2) +(1+€2)Z

€(1-90)
T o[1+ X1 -0F

21bl+e(1=8)lal+1)
TArE 29[ 2(1+ €)1 -0y

We define E Ja) and E ;' (o):
Eo(a)E ['V— Uo(a)] /teff; Eo'(a) = [7—' Uol(a)] /teff, . (6)

The Lagrangians ¢ and ¢’ become

1-2)*+

75 2% (1= 2)

7z A1 -Z)S]. (5b)

e=B (1B fa)¥(0) + Maywa+1)], ™
NA
&= Z} BE,(a)¥'*a) +¥'(a)¥' (a+1)]. (8)

It has been shown*'® that the density of states is related to (InZ), (where Z is expressed as a func-
tional integral of the Lagrangian). Assuming that the density of states is invariant, we have

um (E5=2)- () um (£2=2). ®
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Performing the configurational average we obtain

Nizyn

Lerr = 25 [%E (‘1'§22))2 +‘I’u(r)‘1’(a+1)<1)]')‘2 NZ

a=1,r =1 a=1

In calculating Eq. (10) we use a cumulant expan-
sion, neglecting terms higher than ¥*, This ap-
proximation is equivalent with a Gaussian dis-
tribution of the masses. The parameter X is the
root-mean-square deviation of the optical fre-
quencies normalized to the effective coupling be-
tween the cells.

Respectively, we obtain £.¢;’ with £/ and ' :

E=T—<Ec(a)>p, ,=7’_<Eol(a)>P';
A=[(EHa)p - (Eq(a))2] Y2, (11)
N =[(E o2(@))pr = CE o' (@))p,2] Y2,

In order to analyze our results we perform a
numerical calculation. We consider a simple
cubic lattice in which there is a decoupling be-
tween motion in the x, y, and z directions. We
assume that we have three force constants acting

- between nearest neighbors. K,* is the stretching
force constant acting in the direction of propaga-
tion of the optic wave; K,* and K,* are the bend-
ing force constants and satisfy

(K,*+K,*)/K,*< 1,

This problem might be approximated in the
case of the optical wave by only a one-dimension-
al problem. Each three-dimensional cell of b°
atoms transforms to a system of b® chains of b
atoms; K,”* and K,* transform to forces acting
between chains, so that K,*("*) =bK * and K,*®")
=bK,*. In the next step, we decouple the chains
by approximating the intercell force constant
K,* by K,*+b(K,*+K,*). Such a transformation
preserves the energy for long waves, but it is
not valid in the case of strong disorder with cor-
relation length comparable to b.

E
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FIG. 1. Mode behavior € = € () for Z = 0.5. Dash-
dotted line, CPA; solid line, MREI; plusses, RG.
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r According to this approximation, we obtain

ters @) =t (TV[1+B(K,F+ K, F) /KK (12)

and the disorder parameter is replaced for b=2
by

A=20") =\ED142(K ¥ 1K, %) /K,F )T (132)
and for b =4 by
A=) = 3 @[] L 4K * +K)/KF]T . (13b)
We define the function R()):
R =x"=2x. (14)

The function R(\) describes the transition from
one-mode to two-mode behavior [using Eq. (11),
we obtain for the one-dimensional case R(A) >0],
We can physically explain this claim as follows:
The appearance of a localized mode is the condi-

.tion for a two-mode behavior. For a localized

mode, distant regions are uncoupled for our ef-
fective chain (the correlation function decreases
exponentially). We calculate the coupling con-
stant between distant cells as a coupling of ad-
jacent cells in a given state of the RG transforma-
tion; increasing the size of the cell during the
transformation, we obtain a decrease of f.¢(?"%),
an increase of A, and therefore R(A) >0, For a
one-mode behavior (one type of oscillation) a
long correlation exists and f.¢(43) decreases
slowly relative to the decrease of the root-mean-
square deviation of the oscillation frequencies,
A’ decreases, and R()) < 0.

The fixed points R(A) =0 occur at A =0, x =
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FIG. 2. Mode behavior for Z =Z (6) for € = 1.
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(one mode, two mode) and the unstable fixed point
at A=x,20 [R(1) >0 for A>x, and R(}) <0 for x
<., which describes the point of transition
from one-mode to two-mode behavior.

We choose a typical® ratio K,* /K, *=0,25K ,*/
K,*=~0.25. For a given Z and ¢, we find A, for
which R(1,) =0 and, respectively, the value of &,
[x=x(Z, ¢, 6)]. We plota graph of € vs 6 (5=1,)
for constant Z and a graph of Z vs 6 (6=5,) for
constant €, Figure 1 plots our results for Z=0.5
in comparison with those from MREI (Ref. 1) and
CPA (Ref. 2). Figure 2 plots the results for €=1,
which might explain the behavior of the crystal
InSb_As,_, where €=1,06 and 6=0.38 and which
has been found to behave as one mode for Z =0.25
and two mode for Z =0.85.

We mention that our approximation might change
the value of the unstable fixed point A =X, (to
smaller 2,) and as a result the function Z =Z(0)
(Fig. 2) appears to be shifted upwards for & close

to 1, as this approximation involves less dis-
order.
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