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Renormalization-Group Method for Vibrational Behavior in Mixed Diatomic Crystals
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The renormalization-group method has been applied to investigate vibrational proper-
ties of a diatomic mixed crystal. It has been found that there exists a fixed point which
separates the one-mode behavior from the two-mode behavior. 'This transition depends
on concentration, force constants, and mass ratios.

PACS numbers: 63.20.Dj, 63.50.+x

Et has been shown that a fixed point exists which
separates the extended mode behavior from a
localized one which is interpreted as a transition
from the one-mode to two-mode' behavior. ' Sev-
eral models have been developed in order to find
a criterion which separates the one-mode behav-
ior from the two-mode one. ' Among these the
coherent-potential approximation (CPA), ' the
modified random-element-isodisplacement model,
(MREI), ' the n -0 trick, ' and the recursion meth-
od' have been applied. We propose here a new
criterion based on the renormalization-group'
(RG) method, which is in agreement with experi-
mental' work and also with existing criteria"
(Fig. 1).

Our RG transformation consists in comparing

the eigenvalues, coupling constants, and probabil-
ity distribution of the initial lattice with those of
a new one of spacing S (S&1) times larger than
the original. We choose to describe the given
chain of atoms with randomly distributed masses
m~ and mc first as a chain of cells with two at-
oms, and afterwards as a chain of cells of four
atoms. We are interested in the long-wave opti-
cal mode. Therefore, after computing the eigen-
value and the eigenvector for each basic cell, we
preserve only the long-wave optical phonons,
drop out the acoustical mode, and obtain our ini-
tial Langrangian with S= 1 which is given in Eq.
(2d). Then we will write the coupling between at-
oms in different cells as a coupling between cells.

The Lagrangian of the chain of two-atom cells
is given by

g, = ,'[(e,r—2)x,'+—(r —2)x, '+ 4x,x,]+x,(x, —x,)+ —,
'

[ ~ ~,

where

r=+'/(g„"/m„), e, =-m, (l)/m~, l= 1, 2, 3,

~ is the frequency, m„ is the constant mass, and m, (l) is me with probability z and mc with probabili-
ty 1 —z. [e, takes two values; me/m„= e, mc/m~= e(1 —6) with 0&5&1.]

We have two mass configurations, o, = (me, m„) and v, = {me, m„), and, respectively, two eigenval-

ues, ~, and x„and two eigenvectors, 40, and 40,:

r, = 2(l+ ~)/e, 4o, = (1+ ~') ' '(x, —&x,); (2a)

r, =2[1+e(l —5)]/e(1 —5), 4'o, = [1+ e'(1 —6)'] ' '[x, —e(1 —5)x,]. (2b)

The probability distribution of the eigenvalues is

P(r) = Z5„„+(1 —Z)5„„.
The nondiagonal term written using Eqs. (2a), (2b), and (1) becomes

(2c)

(2d)

n is the cell index, v (o) is the diagonal term depending on the configuration, and t, ' +" is the
coupling term between the cells n and ++1 which depends on the configuration O„a,.

The Lagrangian given in Eq. (1) is then written in a form of four atoms per cell and is given by

g, = —,
' [(e,r —2)x, '+ (r 2)x,'+ (~,—r —2)x,'+ (r- 2)x,'+ 2x,x, + 2x,x, + 2x,x, + 2x, x,]

+ x,(x, —x,)+ —,[- ~ ~ .
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We have now four configurations:

0' m'™'™B' 0' ™'™3™C' g3 'n ™9m mC ' g = m ™C'™'™8
In order to perform our RG transformation we are going to keep, in the four-atom cell, only the

mode corresponding to the configuration of two optical modes in the two-atom cells. This choice cor-
responds to calculating the optical mode from the two optical modes in the two-atom cells. The spac-
ing of the new problem is 8= 2. We obtain the following configurations for the chosen optical mode:

r, =2(1+ e)/e, +o, =[2(1+e')] ' '(x, —ex, +x, —ex,);

2[1+ e(l -6)] x, —e(1 —6)x, +x, —~(l —6)x,
e (1 6) ' ' [1+e'(1 —6)'] '~' (4b)

e1 —0 e1 —0 e'1 —0

@c,=(1+a'+ 2b') 'i'(ax, +bx, +x,+bx,),

r, =r„4o,= (1+a'+ 2b') 'i'(x, + bx, + ax, + bx, ).

a =-1+ e6r, /(2 - r, e}, b =-1 —2 er, (1 - 6);

The probability distribution in this case is given by

g/22' = Q [2(r' —v, .'(a)4'"(n)+(t'), ""4'(o')e'(o')].

P '(r ') = Z'6„.„+(1 —z)'6„i„+Z(1 - Z) 6„i„+Z(1 —Z) 6„i„
As in the case with two atoms we obtain

(4c)

(4e)

(4f)

We replace' t, , '""and (t'), ' "by t,&f
' "——(it, ."'""i)~and (t'),&P'""=(i(t'). .."'""

&& i)~, . By replacing t, , "by t,ff, the randomness in the Lagrangian is reduced so that the "true"
randomness is probably larger than what our estimate will yield. Computing t, f& and t,ff we obtain

e (2 —6}Z(1—Zf e, e (1 —6)Z(1 —Z)
[1+ /2(1 6 )] ~2(1+ g ) 1 i g2 1+ q (1 6)

2 lab I+ 2 I b I e(1 —6)+c, , e
eff 1+a2+ 2b2

+
2(1+ &2yj2[1+ &2(1 6}2]zi2 ( +(1+ &2)

e(1 —6), 2 Ib I+a( la I+1)
2[1 y /2(1 6)&] ( (1+a&+ 2b2)&i2[2(1+ /2)]&i2

2 I b I+e(1 —6}(la I+1}
(1 / a2+ 2b2) [2(1 + q 2)(1 6)2]&i2

We define E,(n) and E,'(n):

E (a) =—[r —v (a)] /t, f f E '(n) -=[r—v '(n)] /t f f' .
The Lagrangians g and g' become

&l2
Z= Z [-'EA~)~'(~)+ ~(~)~(~+1)],

(5a)

(5b)

Af4
&'= Z [lE.'(o)+"(o')++'(n)@'(~+1)].

It has been shown" that the density of states is related to (inZ)~ (where Z is expressed as a func-
tional integral of the Lagrangian). Assuming that the density of states is invariant, we have

Z" J —1 ~N l' Z" ~. —1
(9)
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Performing the configurational average we obtain

(r) 2 2
(n) (10)

In calculating Eq. (10) we use a cumulant expan-
sion, neglecting terms higher than 4'4. This ap-
proximation is equivalent with a Gaussian dis-
tribution of the masses. The parameter A. is the
root-mean-square deviation of the optical fre-
quencies normalized to the effective coupling be-
tween the cells.

Respectively, we obtain ~,qf' with E' and X':

Z = ~ —&Z. (n) &„Z'= ~ &R.—'(n) &, , ;

A. =[&E.'( )& —&R.( )& ']~',
Z' = [&Z,"(n)&~. —&S,'(n) &~.'] '~'.

In order to analyze our results we perform a
numerical calculation. We consider a simple
cubic lattice in which there is a decoupling be-
tween motion in the x, y, and z directions. We
assume that we have three force constants acting

- between nearest neighbors. K„" is the stretching
force constant acting in the direction of propaga-
tion of the optic wave; K, " and K," are the bend-
ing force constants and satisfy

(K,"+K.")/K„"& 1.
This problem might be approximated in the

case of the optical wave by only a one-dimension-
al problem. Each three-dimensional cell of b'

atoms transforms to a system of b' chains of b

atoms; K," and K," transform to forces acting
between chains, so that K, "~"'" =bK, " and E,""'"
=bK, ". In the next step, we decouple the chains
by approximating the intercell force constant
K„"by K„"+b(K,"+K,"). Such a transformation
preserves the energy for long waves, but it is
not valid in the case of strong disorder with cor-
relation length comparable to b.

According to this approximation, we obtain

t, g,
~'=" = f„,&"='~[1+b(K, "+K,")/K„"]; (12)

and the disorder parameter is replaced for b =2
by

=X "' [1+2(K "+K "')/K "] ' (13a)

and for b=4 by

X' = X'~"="= X"='~[1+4(K,"+K,")/K„"] '. (13b)

We define the function R(A.):
R(A.) = A.

' —A. .
The function R(A) describes the transition from
one-mode to two-mode behavior [using Eq. (11),
we obtain for the one-dimensional case R(X) &0].
We can physically explain this claim as follows:
The appearance of a localized mode is the condi-
tion for a two-mode behavior. For a localized
mode, distant regions are uncoupled for our ef-
fective chain (the correlation function decreases
exponentially). We calculate the coupling con-
stant between distant cells as a coupling of ad-
jacent cells in a given state of the RG transforma-
tion; increasing the size of the cell during the
transformation, we obtain a decrease of t,ff

" ',
an increase of A., and therefore R(X) &0. For a
one-mode behavior (one type of oscillation) a
long correlation exists and t, ~f

" ' decreases
slowly relative to the decrease of the root-mean-
square deviation of the oscillation frequencies,
A' decreases, and R(A.) & 0.

The fixed points R(A) =0 occur at A. =0, A. = ~
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FIG. 1. Mode behavior e = e(6) for Z = 0.5. Dash-
dotted line, CPA; solid line, MREI; plusses, RG. FIG. 2. Mode behavior for Z =Z (4) for e = 1.
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(one mode, two mode) and the unstable fixed point
at A. = A. ,g 0 [R(A) & 0 for X & X, and R(A) &0 for A.

&A. ,], which describes the point of transition
from one-mode to two-mode behavior.

We choose a typical9 ratio K,"/K„"~0.25K, "/
K„"=0.25. For a given Z and E, we find A., for
which R(A.,) =0 and, respectively, the value of 0,
[ A. = A.(Z, c, 0)]. We plot a graph of e vs 0 (0 = A. ,)
for constant Z and a graph of Z vs 5 (0= 0,) for
constant c. Figure 1 plots our results for Z =0.5
in comparison with those from MREI (Ref. I) and
CPA (Ref. 2). Figure 2 plots the results for a=1,
which might explain the behavior of the crystal
InSb, As, , where &=1.06 and 6=0.38 and which
has been found to behave as one mode for Z=0.25
and two mode for Z = 0.85.

We mention that our approximation might change
the value of the unstable fixed point A. = A., (to
smaller X,) and as a result the function Z =Z(0)
(Fig. 2) appears to be shifted upwards for 0 close

to j., as this approximation involves less dis-
order.
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