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A correct long-wavelength theory for convection near onset with free-slip boundary
conditions requires two fields and reversible couplings. The wavelengths for which
stable rolls exist are dramatically modified when the generation of vertical vorticity is
taken into consideration. For small Prandtl numbers and rigid boundaries, the skewed-
varicose instability of Busse and Clever is recovered by a plausible but nonrigorous

modification of our free-slip equations.
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Among the many examples of symmetry break-
ing and pattern formation in nonequilibrium sys-
tems, Boussinesq convection has probably been
subject to the most intense experimental and
theoretical scrutiny.’ Because the bifurcation
is a continuous one, only a slow modulation of the
basic convective roll pattern is allowed by the
fluid equations near onset. The time evolution
of a general pattern is naturally developed by
means of multiscale perturbation theory in terms
of a complex amplitude, A, whose phase describ-
es changes in the position and direction of the
rolls and whose magnitude modulates the inten-
sity of the convective motion. The dynamical
equation for A concisely resolves the question
of which of the highly degenerate manifold of
linearized solutions to the Boussinesq equations
persist and are locally stable when nonlinear ef-
fects are included.?™® Prior to the work reported
here, this equation, to lowest nontrivial order
in the deviation of the Rayleigh number or bifurca-
tion parameter, R, from its critical value, R_,

© 1981 The American Physical Society

was thought to be purely relaxation, i.e.,
dA/AdT =- O0F/%A,

where F is a local functional of A.2 As such, it
would also settle the question of global stability
for the convection problem near onset, since if
a small amount of noise were introduced so as
to allow the system to sample the manifold of
locally stable states accessible to it, the roll
pattern would evolve toward the one state that
minimizes the potential F,

It therefore came as a surprise when we found
that the relaxational equation for A is seriously
in error for free-slip boundary conditions when
the Prandtl number, P, is finite. The correct
equations contain a convective term, which in-
validates any statement that could formally have
been made about global stability. Furthermore,
the band of locally stable wave numbers near
onset changes dramatically and for P <10.0, it
is effectively the mirror image of what was pre-
viously considered correct.
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For the rigid boundary conditions appropriate
to experiment, the relaxational equation for dA/
dT is correct to-lowest order in R - R but its
domain of validity is severely limited as P -0,
We propose a simple but nonrigorous modifica-
tion of our free-slip equations that eliminates
the one unphysical feature of these boundary con-
ditions, and captures what we believe to be the
most important nonrelaxational corrections to

dA/dT for rigid boundaries and small P, In fact
for P <0(1), there is a natural continuity between
free-slip and rigid boundaries provided R - R,

is not too small. The new instabilities we found
under the former conditions pass over to the
“skewed-varicose” instability of Busse and
Clever.®? Our model for rigid boundaries may be
of some relevance to the experimental observa-
tions of persistent low-frequency noise in large
containers at low Prandtl numbers near onset, a
finding incompatible with purely relaxational
dynamics,®

We finally consider how rigid lateral boundaries
influence the stationary states accessible to the
bulk, We consider a model problem with spatial
variation only along the roll axis and argue that
for rolls constrained to be normal to two slowly
diverging rigid walls and otherwise smooth, no
steady states exist.

Let us define in terms of the critical value of R
an expansion parameter € =(R - R_)/R,, and
introduce length and time scales, £, 2=37m%/8,
£,2=¢,/(¥V2 1), and 7 ' =1.57%P/(1+P).°* Un-
scaled variables or fields (X) will be denoted by
X and we assume that the unperturbed roll pat-
tern is parallel to the y axis and has a wavelength
271/q,. To lowest nontrivial order in € we find

3,A=A+(8,-i98,9)24 - |[APA-iB,A, (1a)
Y 9,Q, =9,°Q, +£8,[4*(3,-18,%)A +c.c.], (1b)

where y=V3 €2/(1+P), g=2(1+P)/P? and c.c.
denotes the complex conjugate. Equation (1b) is
new and describes the generation of vertical
vorticity, §,, from the roll curvature. With our
scalings the slowly varying piece of the x veloc-
ity in physical units, B,, is recovered from

x?

Q,=-08,B,, B,=2q,1+P)B,/(31°P¢). (2)

By contrast, A gives rise to a contribution to the
x velocity of the form ¢ Relexp(ig,£)A Jcos(nz),
where ¢ =0(e?). Although free-slip boundary
conditions are peculiar in allowing a horizontal
velocity independent of z,” vertical vorticity is
always present, though to higher order in € when-

836

ever rolls bend.

The other component of lateral velocity, B,, is
found from Q , and B, by imposing incompressi-
bility. Neglecting terms that could only originate
from the initial conditions and are not generated
by (1b) implies that B, ~0(¢>/) and that it only
enters (1a) to next order in € in the form el/sz
X 3,A. There is no obvious problem with (1b)
near rigid lateral boundaries since the source of
vorticity vanishes with |A|. The variation of a
defect’s velocity with Prandtl number that we
have observed® is clearly consistent with (1b)
since ©,~0(1/P) for P> 1; moreover, a quanti-
tative calculation of the effect should be possible.
We note in passing that (1a) with B, =0 is only
correct when the rolls remain rectilinear or if
P =%, The problem of a cylindrically symmetric
roll pattern needs to be reexamined.®

The different scale factors applied to x and y
were chosen to obtain the conventional form of
(1a),® but are clearly inappropriate for (1b).
When we present the stability analysis for the
laterally periodic problem it will be necessary
to go from @, to B, by using the full two-dimen-
sional Laplacian to avoid an unphysical nonuni-
formity in the limits € —0 and (box size) — .

While it is clear from (1a) and (1b) that A is
the slowest mode (i.e., the order parameter) and
2, is faster and derived from it, the limit P—-0
is singular. Indeed, Busse has shown that the
oscillatory instability, for which 2, is the order
parameter, occurs for €2~ p in an infinite sys-
tem.” If we set

A=1+e " M(bAe i _cc)),

B=0Be~Mcos(ky - wt),

(3)

in (1) and (2) and linearize in 64 and 6B, we ob-
tain to the order in which we work precisely the
eigenvalues and eigenmodes predicted by Busse’
and later used by McLaughlin and Martin.'° We
thus infer that (1a) and (1b) are limited to €
«<min(1, P2 and that higher -order terms in €/
P? will reverse the sign of the dissipation in
(lb).u'lz

To investigate the stability of parallel rolls in
a large but finite, laterally periodic container
we set A=(1—-q?Y2¢#@*9(1 +y) and linearize
in », B,, and the gradients of ¢. The condition
that the perturbation with wave vector (&,, &)
be unstable is

2glgk, = (1 - qdk,2] /(1 +0k,2/k .7

>(k,2+ Ok, %) (ak,?+2qk,2+k,Y), (4)



VOLUME 47, NUMBER 12

PHYSICAL REVIEW LETTERS

21 SEPTEMBER 1981

where 6=¢,%/¢,2 and a=(1-3¢%/(1-4%. Itis
then obvious on dimensional grounds that for ¢
>0 parallel rolls are always unstable in a suffi-
ciently large box whose minimum dimensions
tend to infinity with P. The denominator on the
left-hand side of (4) arises from the replacement,
Q,=-ik,B,(1+0k,?/k,?, mentioned above which
eliminates the ‘unphysical instability at £,=0 for
q>0,

For ¢ <0, instability requires a finite 2, and
we can therefore set 6=0 in (4) and investigate
only k,=0. The so-called zigzag instability first
occurs at k,?= —¢, provided

q¢*/(1 -¢® =4(1 +P)/P2, (5)

Since the cross-roll instability forces ¢* <0,3058,
(Refs. 3 and 4), the zigzag instability is replaced
entirely by the former for P <10.0.,

The zigzag instability is suppressed for small
P since the @, generated by the curvature rotates
the rolls back to their rectilinear configuration.
In fact the effective equation for ¢ for £,=0 is
no longer diffusive at long wavelengths but re-
laxes at a finite frequency. For ¢>0 and 2., %,
+#0, we have recovered the skewed-varicose in-
stability® which develops through a slow modula-
tion in both the roll spacing and direction. Our
stability diagram near onset for P <10.0 is the
mirror image of what was obtained from the old
amplitude equation,?

The accuracy of (5) as a function of € and P in
the ranges 0.1 <€ <0,5 and 10 <P <20, together
with the most unstable value of k,, was checked
against a direct numerical simulation of the
Boussinesq equations. The theoretical value of
q from (5) was generally accurate to 5% except
when the cross-roll instability occurred first.

For rigid top and bottom boundary conditions,
Q, and B, should still be understood as slowly
varying in x-y but now must vary approximately
as z(1 -—2z) in the vertical. It is thus natural to
replace (1b) by

Q,=g"8,[A%(8,-i9,9)A +c.c.], (6)

where Q,=-0,B, and g’ is a constant of order
€2 which varies as P~2for 0.1 <P =1 and satu-
rates for smaller P, Equation (1a) may be kept
invariant by redefining the scale factors. It is
the finite dissipation in the Navier -Stokes equa-
tion for &, that forces B,~0(e*?) and thus makes
the last term in (1a) higher order in € than the
others, e.g., B,~O(eY2),1112 The condition for
the zigzag instability therefore becomes g < - g’(1
—¢®, while in a large container the skewed-

varicose instability occurs whenever 2gg’ >(1
-3¢%/(1 - ¢%. Equation (68) merely corrects the
most obvious nonphysical features of the free-
slip approximation. It is not systematic in any
small parameter but for small P may capture
the essentials of the problem; e.g., compare
our stability diagrams with Ref. 5.

It is the skewed-varicose and not the oscillatory
instability that may well be of greatest relevance
to the appearance of time-dependent convection
near onset in large containers.®!® This problem
is most easily approached in the limit ¢, P~ 0, g’
finite, where the dynamics are no longer relaxa-
tional., It is thus no longer obvious even for the
laterally periodic problem that a system render-
ed unstable by increasing € for ¢ >0 will ever re-
lax back to the stable states that exist for ¢ < 0.
Numerical experiments with free-slip boundary
conditions have shown that for a small box of
order 87/q, square, the system does find its way
back to a stable state, whereas for a larger box
it does not in a reasonable length of time,

The “turbulence” seen in a large container may
resemble a glass in that the noise may be tran-
sient but with a time scale that diverges expo-
nentially with the system size. In our numerical
experiments for P=4 and €=0,5, the dynamics
was so obviously not relaxational that it is diffi-
cult to see why the lateral diffusion time should
be relevant, Although our vorticity equation sug-
gests that free-slip boundary conditions accen-
tuate the tendency of a disordered roll pattern to
wander in phase space, it is not obvious theoreti-
cally why the rather nonuniform textures ob-
served by Gollub and Steinman'® proved to be so
stable just below the skew-varicose transition
since the correct dynamics are not derivable
from any obvious potential,

Rigid lateral boundaries in x significantly con-
strain the stationary states accessible to the -
bulk.’ We now consider the complimentary
problem involving only ¥y variation and argue
that unless an acceptable solution can be found
to the separate one-dimensional problems a
full two-dimensional solution is unlikely to exist.
To examine the behavior of rolls subject to a
curvature induced by the lateral boundaries
within the context of (1a), we consider a wedge-
shaped container occupying the region defined in
polar coordinates, p, 8, by |8 sa <1, p, <p
< p,, with (p,—p,)/p, <1. We set B,=0, ignore
variation in ¥, and impose the boundary condi-
tion |A[=8,|A|=0 aty =tpsina.’® Examination
of the amplitude equation in magnitude and phase
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variables makes the existence of stationary
smooth solutions with the rolls normal to the
boundaries seem unlikely.

With some assumptions it may be shown that
the “free energy” associated with (1a) has a
global minimum when the phase of A is a con-
stant. The rolls therefore prefer to remain
straight throughout the container. Restoring the
B, field and including (1b) does not appear to gen-
erate any new stationary solutions but may in-
stead yield interesting dynamics.
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The presence of unitary group generators in the time evolution of N-level quantum
systems is shown to suggest a class of new nonlinear constants of motion, and to permit
the description of the evolution in terms of the rotations of a real coherence vector.
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The description Qf magnetic and optical reso-
nance phenomena, especially at the qualitative
level, is enormously simplified by the use of the
Bloch spin or pseudospin vector. Unfortunately,
the central equation on which the vector descrip-
tion is based, namely

dS/dt =yBxS§, (1)

is valid only for spins or other physical systems!®
whose energy levels are equally spaced.
It has long been thought impossible® to obtain a

similarly simple vector description of more com-
plex quantum systems, even including a system
as simple as a three-level “atom.”® Particularly
in optical resonance physics, the dynamical evo-
lution of three-level systems is of great impor-
tance. It is central to discussions of two-photon
coherence,** resonance Raman scattering and
double-resonance processes,’ three-level super-
radiance,® coherent multistep photoionization and
photodissociation,” and trilevel echoes.?

In this Letter we solve the problem of a vector
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