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Calculation of Von Kirman's Constant for Turbulent Channel Flow
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The universal velocity profile for wall-bounded turbulent Qows is verified by numer-
ical integration of the incompressible Wavier-Stokes equations. Mean velocity profiles,
Reynolds stresses, and turbulent intensities are in good agreement with experiment.
Von Karman's constant is calculated to be ~ = 0.46+ 0.05.

PACS numbers: 47.25.-c

High-Reynolds-number mall-bounded turbulent
flows are extremely sensitive to initial condi-
tions, but their statistical properties are not.
Flow past a wall is largely independent of free-
stream conditions so that it is a general building
block for understanding inhomogeneous, aniso-
tropic turbulence. Although more complicated
than homogeneous turbulence, wall flows have
been accurately modeled with simple low-order
closure methods, but the resulting models do re-
quire empirical input. ' There has not been to
date a fundamental demonstration that statistical
quantities measured experimentally in wall flows
are predictable from the governing equations of
fluid dynamics. Here we use a high-resolution
numerical simulation of the Navier-Stokes equa-
tions to verify the basic scaling features of wall-
bounded flows without requiring the resolution of
extremely small scales or integration out to very
large times. In particular, the computed turbu-
lent mean velocity profile fits the "law of the
wall'" with von Karman's constant t see (I) below]
K=0.46 ~ 0.05. Here K governs the dynamics of
the inertial layer in which neither geometry nor
Reynolds number are important so that universal
results may be expected.

Let z be the coordinate normal to the wall and
u~ =(T /p)' be the friction velocity, where ~
= v a (u) /&z is the mea, n wall stress, p is the fluid
density, and v is the kinematic viscosity. Here
() denotes an average over the coordinates x, y
along the wall, where the mean flow is in the x
direction, and the velocity field is v =(u, v, ut).
The wall Reynolds number is R~ =u+h/v, where
h is the characteristic length. In the channel flow
discussed below, h is the channel half-width. In
the following, we denote quantities scaled by u+
and A, with overbars, while distances measured
in terms of the sublayer thickness v/u+ will be
denoted by subscript asterisks.

According to classical scaling arguments, ' in
the outer region (away from the wall) the mean

velocity u,„, does not depend on R+ as R+ -~ so
that

u,„,- u~f (z) = usaf (z/h).

In the inner region (where z is within order v/u~
of the wall), the outer scale h is no longer im-
portant so that

u
~ ~ ugg (zg ) = ugg(zug /v).

If an intermediate region exists where both the
outer and inner scalings hold, then

du;„(zg) du, „,(z ) I
dgg dz K

This gives directly a logarithmic velocity region
(log layer):

Ql~ = K lnzg+ c,
where u;„=u;„/u+ and w and c are constants.

The above scalings are independent of R+ as
R~ -~. This suggests a numerical experiment
with R+ sufficiently large that the flow is asymp-
totic but sufficiently small that all scales can be
resolved. However, this spatial scaling analysis
only holds for a stationary flow, i.e., as t-.
Therefore, before attempting a direct numerical
simulation, it is necessary to know the time scale
for evolution of the flow.

Here we study the particular case of plane
Poiseuille flow, defined as flow between parallel
plates driven by a constant pressure gradient of
magnitude 2/Ii, where A is the Reynolds number
based on channel half-width and laminar (parabol-
ic) center-line velocity. No-slip boundary con-
ditions are imposed at the wall and periodicity is
assumed in the (x, y) plane with periodicity inter-
val (2n/o. ', 2m/p). The time-dependent three-di-
mensional (3D) incompressible Navier-Stokes
equations govern the flow in the interior of the
channel. We have shown previously4 that laminar
plane Poiseuille flow, v=(l —z')x, is unstable to
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perturbations of the form

v'=A, D v,D (x, z, t)+ A~v3D(x, y, z, t). (2)

300

In particular, if A,D is finite while A» is infini-
tesimal, one can shorn that V3D grows exponential-
ly in time on a convective time scale. The initial
conditions used here are of the form (2) in which

v,D(x, y, 0) and v,D(x, y, z, 0) are eigenmodes of
the linear Orr-Sommerfeld problem' that depends
on (x, y) as exp[ t(max+ nPy)] with m = +1, n = 0

(v2D) and m = +1, n= &1 (v,D). Near the wall, the
perturbation velocities and boundary layer thick-
ness 5 scale as u'=O(u') = O(1), while to'=O(5)

O(R I/2) 6

For a stationary flow we clearly require that
all statistical quantities equilibrate, and in par-
ticular that dR*/dt= 0. However, an integral
over all space of the x-momentum equation gives
(8/8t) j(u)dz =O(1/R), where () indicates (x, y)
averaging. Thus, complete equilibration can only
occur on a viscous time scale, and a high-Reyn-
olds-number numerical experiment would appear
very costly starting from laminar initial condi-
tions. However, there is also a transition time
scale present; on the basis of the scaling of v'
given above, it is easily shown that 8(u)/8t = O(1/
R) in the interior and 8(u)/8t=O(l) near the wall,
where we have also used the fact that the Reyn-
olds stress —(uzo) is initially uniformly small in
the interior. This result implies a fast develop-
ment of the wall region, which, coupled with the
viscous time scales for the interior flow, gives an
artificially "blunt" mean profile and correspond-
ingly elevated A*. Note that such an argument
only holds if the perturbation v' can sustain it-

self, i.e., an instability exists. As R* must even-
tually return to its initial value, ' we will obtain
dR~/dt=0, at a finite time, i.e., a quasistation-
ary state where the wall and interior are in bal-
ance. At this time universal results should hold.
Note also that at this time R* is a maximum
mhich is optimal for obtaining asymptotic results.

It is also appropriate to comment on the draw-
backs of another approach to avoiding long inte-
gration times, namely using as initial conditions
experimentally obtained statistics. ' The overall
viscous evolution time implies that many flows
mill change significantly only on a viscous time
scale, and hence will appear steady for many
convective time scales. Furthermore, such in-
itial conditions do not show that the observed
statistics develop naturally from laminar transi-
tion structures.

In~r work, the Navier-Stokes equations are
solved numerically with use of a spectral decom-
position of the velocity in terms of Fourier se-
ries in x and y and Chebyshev polynomials in z.
For the present study we use 64 spectral func-
tions in each of the three directions [i.e., (64)'
modes]. '

Parameters for the particular run given here
are R=5000 and n = P =1.32. The imtial condi-
tions (2) have two-dimensional energy' 0.01 and
three-dimensional energy 0.005. The three-di-
mensional energy is taken finite (as opposed to
infinitesimal) to expedite nonlinear interaction.
The n and P chosen here give maximum three-
dimensional growth. 4 With these parameters the
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FIG. 1. A plot of the wall Reynolds number A =u h/
v as a function of time. B„ initially rises on a convec-
tive (transition) time scale and then decays to its ini-
tial values on a viscous time scale. When dR /dt = 0
(t = 50) a quasistationary state is achieved.
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FIG. 2. A plot of the mean velocity u;„at t = 50 as a
function of logy pz, Note the well developed viscous
sublayer (there are three additional grid points that
fit u;„- u z that lie in the region log&ps & 0), buffer
region, and log layer. The measured von Karman
constant is & = 0.46+ 0.05.
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FIG. 3. A plot of the Reynolds stress —(M~

a function of z fort = 50 —7 (' p
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(highly vectorized& codecode requires less than 10
per time step on the C -1ray- computer.
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A plot of R*(t) is given in Fig. 1. ln accord
with the above analys' Rysis, ~ rises ra idl

~ ~ t 0

0 and then falls off to its
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FIG. 4. A plot of the rmse rms spanwise velocity at t = 50
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A correct long-wavelength theory for convection near onset with free-slip boundary
conditions requires two fields and reversib1e couplings. The wavelengths for which
stable rolls exist are dramatically modified when the generation of vertical vorticity is
taken into consideration. For small Prandtl numbers and rigid boundaries, the skewed-
varicose instability of Busse and Clever is recovered by a plausible but nonrigorous
modification of our free-slip equations.

PACS numbers: 47.25.Qv, 03.40.ac, 47.10.+g

Among the many examples of symmetry break-
ing and pattern formation in nonequilibrium sys-
tems, Boussinesq convection has probably been
subject to the most intense experimental and
theoretical scrutiny. ' Because the bifurcation
is a continuous one, only a slow modulation of the
basic convective roll pattern is allowed by the
fluid equations near onset. The time evolution
of a general pattern is naturally developed by
means of multiscale perturbation theory in terms
of a complex amplitude, A, whose phase describ-
es changes in the position and direction of the
rolls and whose magnitude modulates the inten-
sity of the convective motion. The dynamical
equation for A concisely resolves the question
of which of the highly degenerate manifold of .

linearized solutions to the Boussinesq equations
persist and are locally stable when nonlinear ef-
fects are included. ' 4 Prior to the work reported
here, this equation, to lowest nontrivial order
in the deviation of the Hayleigh number or bifurca-
tion parameter, A, from its critical value, R„

was thought to be purely relaxation, i.e.,
dA/d T = —()E(()A,

where E is a local functional of A. ' As such, it
would also settle the tluestion of global stability
for the convection problem near onset, since if
a small amount of noise were introduced so as
to allow the system to sample the manifold of
locally stable states accessible to it, the roll
pattern would evolve toward the one state that
minimizes the potential I'.

It therefore came as a surprise when we found
that the relaxational equation for 4 is seriously
in error for free-slip boundary conditions when
the Prandtl number, P, is finite. The correct
equations contain a convective term, which in-
validates any statement that cou1d formally have
been made about global stability. Furthermore,
the band of locally stable wave numbers near
onset changes dramatically and for P ~ 10.0, it
is effectively the mirror image of what was pre-
viously considered correct.
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