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tempt to pump ~a) -state atoms to electron spin-
flipped states which would then be ejected from
the HSC by the field gradients, leaving a gas en-
riched in (b)-state atoms. If T, is fast, however,
this technique is also frustrated. Although this
unique system, H&, presents a number of excit-
ing new phenomena and areas of research, it
seems that one of the most fascinating, the weak-
ly interacting Bose-Einstein condensed gas, will
not be easily achieved.
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We have observed an unexpectedly strong effect of the squashing mode in He-B on
the longitudinal acoustic impedance Z. Most peculiar is the behavior of the reactive
part Z" which displays both large positive and negative excursions. Our analysis
illustrates the role of the boundary conditions on the superfluid order parameter and
of the crossover with temperature of the squashing mode from a propagating vrave
with velocity c«(which is measured) to a nonpropagating surface wave (whose imag-
inary velocity accounts for the anomalies ofZ").

PACS numbers: 67.50.Fi
The squashing mode in superfluid 'He-B is an

eigenmode of the complex tensorial order param-
eter which couples strongly to density fluctua-
tions. ' In weak-coupling theory its eigenfrequen-

cy is proportional to the gap function Qpsq

=(, )' '&scs(T). This distinctive mode was identi-
fied first in the vicinity of the transition temper-
ature T,.' In more recent sound-propagation ex-
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p+po+ ~ v =0,

v+&Il/p =0 (2)

periments at higher frequency and lower temper-
ature, ' ' only the wings of the resonance peak
could be observed because of the high attenuation
at resonance. This work is a direct study of the
squashing mode through measurements of the lon-
gitudinal acoustic impedance Z of the superfluid.
This type of experiment, which has been per-
formed previously only on normal liquid 'He, '
essentially amounts to measuring complex phase
velocities. The new feature described in this Let-
ter is the influence of two coupled modes on the
transfer of acoustic energy from the wall.

The experiment was performed with use of the
same cell and in the same cryogenic apparatus
as in Ref. 4. Ke electronically monitor the free
ringing decay of an X-cut quartz crystal weakly
excited by a short (4-p, s) tone burst at its reso-
nant frequency &u/2~. The decay envelope can be
represented by exp[- (~s '+id, ~)t]. The real and
imaginary components of Z (ReZ and ImZ) are
easily shown' to be proportional to vs ' and b,m/

w, respectively. We operate at constant frequen-
cy (45, 75, and 105 MHz) and pressure (0 to 15
bars) and sweep the temperature in very slow de-
magnetization and remagnetization cycles (typi-
cally 50 pK/h). Temperatures are converted in-
to frequencies by use of the weak-coupling gap
function 1.764ksT, b, scs(T)/b, pcs(0). The excita-
tion power level is kept below the threshold of
nonlinear phenomena. With this setup, changes
in Z/p, as small as 0.01c can be resolved; c is
the velocity of sound. As shown in Fig. 1, typi-
cal variations of Z/p, are a sizable fraction of c.
Hence, the squashing mode has a pronounced ef-
fect on the longitudinal acoustic impedance. Two
features are particularly noteworthy: (1) The
line shapes are markedly asymmetric with long
tails extending to the low-temperature side; and
(2) ImZ/p, is as much affected by the squashing
mode as is ReZ/p, and has large positive as well
as large. negative deviations. These features
have never been encountered before to our knowl-
edge and may be accounted for by the following
phenomenological model.

The superfluid is treated as a continuous medi-
um, in which small motions occur, giving rise
'to a mass transport velocity v and to small devia-
tions p and Tl of the mass and momentum flux
densities about their equilibrium values p, and
TI,. Although in the collisionless regime, we still
have local conservation of mass and momentum
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FIG. 1. Variations of the real and imaginary parts
of the longitudinal acoustic impedance Z normalized to
the low-temperature, low-frequency limit p peg ~ vs the
reduced frequency 1-~,q /u . The dots represent only
a part of the experimental data points obtained at 13.5
bars and 104.3 MHz in He-9. Reduced frequencies
are computed from the measured reduced temperatures
T /T, using the BCS gap function as explained in the
text. The pl~~ line comes from the theoretical expres-
sion for Z with the following values of the model param-
eters: A= 1.52&& 10 csq/c& 0 16 Tsq 7-p~ 2.5 Ps,
g ~ 780 ~. The resonance at ~~ ~,z is found at T/T,
= 0.680.

V II = &II/Bp 9' p + 811/86 7' 6 —jf/70, (4)

We also need an equation of motion for the su-
perfluid order-parameter eigen component which
is relevant to our problem. From a microscopic
calculation based on the kinetic equation, ' we know
that the appropriate combination is 6 =d„"- (d„„"
+d„")/2. [Sound propagates along z (parallel to
k) and d,'„"= lmd, (&u, k); d, „ is the usual order-
parameter matrix. ] Reference 7 indicates that
the behavior of 5 close to the resonance may be
described by the following differential equation:

2g 2~2' ~2 (3)
sq

Equation (3) reproduces the dispersion law for
the squashing mode (i.e. , ~'=&a, „'+c, 'k'), con-
tains a phenomenological collision time ~sq p and
includes the coupling to sound, to first order in
k', through the parameter y. This coupling also
enters the equation of motion for p because the
generalized pressure II is a function of both p
and 5:
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where the last term has been introduced to de-
scribe zero-sound damping. Putting c'= BII/Bp at
constant 6, we readily find from Eqs. (1), (2),
and (4)

p +p/To —c V p =BII/85 V 5. (5)

The model described by Eqs. (3) and (5) is quite
similar to that used by Calder et al. ' to analyze
the transmission of sound. Its solution with fixed
w consists of an arbitrary superposition of four
plane waves with phase velocities +c, andre
where

c,' 1 1 1' 4A'
1+—+ 1 —— +

C 2 K 8) P2

w = (c „'/c') '(1-~,q'/(u'+i/u)7. ,q),

A =yp c BII/86i c =c /(1+i/(dT0)

Besides a pole at zo = 0 (i.e. , for the k =0 limit of
the squashing mode) c,' possesses two branch
points at w, = 1-2A+ 2[A (A —1)]"' (where the
zero-sound mode crosses the pair-vibration
mode). It may develop an imaginary part even in
the absence of damping when A(A —1))0. In this
case, the system is unstable with respect to fluc-
tuations at large enough wave vector. On experi-
mental grounds, such an instability is ruled out
and we shall require that the condition 0 (yBII/86
(c'c, ' be satisfied. This stability condition also
ensures that c, and c give rise to waves which
decay when propagating away. As we are dealing
with a semi-infinite homogeneous medium and
since the fluid is at rest at infinity (z = ~ bound-
ary conditions), we retain only the two outgoing
waves:

p(t, z) =p, exp[-i(u(t -z/~, )]

+p exp[-i(u(t-z/c )]
and similar forms hold for 5, v, and II.

The acoustic impedance of the liquid follows
from the definition Z =Ilgvo (vo, interface veloc-
ity; II„generalized pressure at z =0). From
Eq. (2), we have that IIJp, =c+ + v+vc. We note
that, in a usual liquid where sound is the only
acoustic mode, Z/p, =c, where c is the complex
velocity. In this case, Z" is directly proportion-
al to the absorption and does not change sign. In
'He-B, the acoustic impedance arises from the
interplay of two modes, which explains the re-
markable behavior of Z". We need two boundary
conditions at the interface to eliminate the ampli-
tudes v+ and v . From continuity at z =0, v+ =v
=v~. We must also specify the behavior of the
pair-vibration amplitude 5 close to a wall. On

A = &y(cu, T)(co —c,)/c„ (6)

where co and ~z are the zero- and first-sound
velocities. x(+,T) is an integral defined in Ref.
1:which embodies the frequency and temperature
dependence of the coupling between modes. Then
we set b, = A(T, ) and obtain the full curve in Fig.
2. The fitting procedure is sensitive mainly to
the combination A —1 and, especially at low pres-
sures, the accuracy on A is somewhat impaired.

As the velocity of the squashing mode c, is de-
termined to a fair level of accuracy, we were led
to evaluate again its theoretical expression in-
cluding the Fermi-liquid corrections. " At T
«T„we find

~ „'=v, '[10/21+ I/2u+ (ar/225)Z, ], (7)

where J = (5/v'6) arctan( 6/2) and v~ is the Fermi
velocity. Result (7) is seen in Fig. 2 to account
well for the experimental values and, together

general grounds, we expect that 5 goes from its
bulk value to zero at a distance ( from the wall
which is of the order of the superfluid coherence
length. Assuming that this simple result holds,
the second z = 0 boundary condition reads 85/Bz
= —6/f T. he parameter t; is akin to the slip-
length concept justified in detail by Hgjgaard Jen-
sen et al. ' in the case of shear waves. Applying
this complete set of boundary conditions, we find
that

Z =Zo(poc+c +i(gfZ )(poc+c +i(pe )0

Z, =c'(c, +c )(c'+c,c ) 'p„
Z„= (c,'+c c++c ' —c„'c '/c')(c, +c ) 'p, .

Z involves six physical quantities: the squash-
ing frequency +,~, the dimensionless coupling
factor A =Ac, '/c', the velocity of the squashing
mode c, , two quasiparticle collision times 7,„
and v„and the accommodation length t; Of .these
six parameters, m, is measured directly" and
X known approximately. ' At very low tempera-
tures, dissipation is very small, so v, and Tsq
become very large and do not give a relevant con-
tribution to Z. An approximate starting value can
be given to c, by theory. " Thus only & is totally
undetermined. A numerical fitting procedure
yields precise values for these remaining four
quantities. The full curve in Fig. 1 shows the out-
come of such a fit (~, =7,„).

We present in Fig. 2 the values of A obtained
at various frequencies in the vicinity of T/T,
-0.6. If E,'=0, the theoretical expression for A

is given by'
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parameter is not small, higher-order terms will
be significant. Their contribution should not
change drastically the phenomenological model
and may even improve the already fair agreement
displayed in Fig. 1. But it may also alter the cor-
respondence, illustrated in Fig. 2, between the
model parameters A and csq and their micro-
scopic counterparts, expressed by Eqs. (6) and
(7).
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FIG. 2. Dimensionless coupling factor A (on top) and
reduced squashing velocity c,q/c, (at the bottom) vs
pressure. These parameters are obtained from fits to
the experimental data as shown in Fig. 1 at tempera-
tures in the vicinity of T/T, = 0.6. The plain lines
correspond to expressions (6) and (7): Values of E&'

from Ref. 11 (upper curve) give squashing velocities
in slightly better overall agreement than those from
Ref. 12 (lower curve).

with (6), satisfies the stability condition. The
error bars in Fig. 2 reflect uncertainties in the
fitting procedure. The accommodation length f
is found at all pressures to be of the order of
(1.8+ 0.2)$„5,being the coherence length Ifv F/
gk~ T,. %e find it a remarkable fact that acoustic
properties can be so sensitive to such an abstract
entity as the boundary condition on the order pa-
rameter. Also remarkable is the importance of
the evanescent branch of the squashing mode (+
(~ sq)

Finally, we note that the simple model de-
scribed here accounts fairly well for the com-
plex behavior of the longitudinal acoustic impe-
dance in 'He-B and that the model parameters ex-
tracted from the data agree satisfactorily with
theoretical expectations. However, we want to
point out that this model is equivalent, in micro-
scopic theory, to a series expansion in (kvF/b, )'
truncated after the first order. As the expansion

' On leave from Texas AfsM University, College
Station, Tex. 77843.
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