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Evidence for Decreased Pairing Energies in Odd-N Nuclei from Band-Crossing Frequencies
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An odd-even neutron-number dependence of the alignment frequency of the first pair of
g $3/2 quas inc utrons in rare-earth nucle i is established . This effect is explained by a re-
duction of the neutron pairing-correlation parameter &„ for odd-N systems as compared
to seniority-zero configurations in even-N nuclei.

PACS numbers: 21.10.Re, 27.70.+q

The cranked shell model has been successful in
reproducing many of the spectroscopic properties
of the near-yrast region of deformed nuclei up to
J =30 assuming a constant, large pairing-correla-
tion parameter, L.' ' It is expected, however,
that pairing should decrease with increasing angu-
lar momentum. The present Letter addresses
this problem. Experimental evidence is reported
for an odd-even neutron-number dependence of
the angular frequency at which it is energetically
more favorable for the first pair of i»~, neutrons
to be aligned. Such a behavior can be explained
by a reduction of the neutron pairing-correlation
parameter, 6„, for the odd-N system as com-
pared to the seniority-zero neutron configurations
in even-N nuclei. The reduction in A„presumably
is the result of the "blocking" of the pairing con-
tribution from a quasineutron orbit near the Fer-
mi surface, and therefore is expected to be a
function of the number of unpaired neutrons.

To establish the angular frequency, A~, at
which it is energetically favorable for a quasineu-
tron pair to be aligned, it is convenient to express
the information contained in the level schemes in
terms of h~ and the experimental excitation ener-
gy in a rotating frame, "e ', or the Routhian.
Nonrotational features, interpreted as band cross-
ings, are apparent from the variation of e' as a
function of hu for a specific cascade —see Fig. l.
The band-c rossing frequencies, A +„are well
defined in such a plot. In even-even rare-earth
nuclei the lowest-frequency band crossing corre-
sponds to the crossing of the ground-state band
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FIG. 1. Experimental Houthian, e', as a function of
+~ for the yrast bands of Yb and Hf and the lowest
negative-parity bands of Yb and Hf indicating the
definition of N~ for weakly interacting bands ( ' 6 Yb)
and strongly interacting bands ( ' Hf) . The ordinate
scale on. the left- and right-hand sides applies to even-
and odd-mass nuclei, respectively.

with the aligned two-quasineutron "Sband. " This
band crossing, which corresponds to the align-
ment of a pair of i,~, quasineutrons, ' is responsi-
ble for the "backbends" observed in the yrast
sequence of even-even rare-earth nuclei. A band
crossing corresponding to the alignment of the
same two quasineutrons can be observed in the
low-Iying negative-parity bands of the odd-N nu-
clei. ' Here a band based on negative-parity, sin-
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gle quasineutrons crosses a three-quasineutron
band involving the unpaired, negative-parity
quasineutron as well as the same two i/3/2 quasi-
neutrons, which are the configuration of the S
band in the even-even nuclei.

Experimental band crossing (or alignment) fre-
quencies have been obtained for a large number
of Er, ' Yb,"Hf, ' and W' nuclei. The systematic
behavior of Sw, is shown as a function of neutron
number in Fig. 2. Throughout the N = 90-102
mass region the @ran, corresponding to the align-
ment of the first pair of quasineutrons is system-
atica/ly lo~ex for odd-N nuclei than for even-even
nuclei. This systematic variation of @u, between
odd- and even-N nuclei is not a result of the tech-
nique of defining N. u, from the experimental
Routhians. The crossing frequencies are nearly
independent of the Harris parameters' used to re-
move the excitation energy of the rotating core.
If a nonzero value of K is assumed for the S band,
the magnitude of the odd-even variation of k~,

would be even larger.
For odd-Z rare-earth nuclei the level schemes

are not established sufficiently high in A~ to de-
fine the crossing frequency from experimental
Routhians. Some information, however, is avail-
able' for '"t,u. For this N =98 nucleus the slope
of e' changes sufficiently slowly with A~ so that
it is possible to obtain information on k~, from
the plot of the alignment (i —= —de '/dry) as a func-
tion of kau. For the

I 541] 2 proton band in "~Lu98
the di/d&u for given S~ in the "crossing region"
is nearly identical to that of its isotone '"Hf98
and is quite different from that for the neighbor-
ing odd-N system '"Hf»,. see Fig. 3. A similar
conclusion can be made from a comparison of i
vs S~ for bands in '"Tm" with that of the ap-
propriate bands in the neighboring even-even and
odd-N nuclei.

The angular frequency of the alignment of the
first pair of neutrons is less for odd-N nuclei
than for even-N nuclei. These alignment or band-
crossing frequencies, however, are nearly con-
stant for isotones and for a number of even-even
rare-earth nuclei of different Z, N, and deforma-
tions. Cranked shell model (CSM) calculations
(see Fig. 4) indicate that such systematics may
be explained by a reduction of the neutron pairing-
correlation parameter, 6„, for the odd-N nuclei,
presumably the result of the "blocking" of the
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FIG. 2. (a) Systematics of +~ for yrast bands in
even-mass nuclei and for the lowest negative-parity
band in odd-N nuclei. (b) Values of &„necessary
to reproduce the ~+~'s in CSM calculations. The error
bars only reflect uncertainties in the definition of the
~~'s and do not include model-dependent uncertainties
resulting from the CSM calculations. (c) A comparison
of 4„ for even-N systems (solid symbols) with ~„
(open symbols) obtained from odd-even. mass differ-
ences.
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FIG. 3. Comparison of the alignments of the yrast
bands in ' Lu (favored and unfavored portions indicated
by squares and triangles, respectively) and Hf with
that of the lowest negative-parity band of Hf. The
yrast band in 8Lu aligns at frequencies comparable to
that of the ' Hf yrast band. For reference, the values
of @~ obtained from crossings in e' vs +~ plots (see
Fig. 1) are shown for ' Hf by arrows.
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FIG. 4. Cranked shell-model two-quasiparticle Routh-
ians as a function of I for Yb calculated with two
different values &„, indicating the shift in I~~ for a
change in &„.

pairing contribution from a quasineutron orbit
near the Fermi surface. The values of A„which
reproduce the observed band crossings in CSM
calculations, b,„M, are shown in Fig. 2(b). In
these calculations the deformations, &, and e~,
were varied according to the prescription of
Bengtsson" and the Fermi surface was chosen to
reproduce the correct neutron number. The
change in the predicted alignments of the quasi-
neutron orbits between N= 90, where the [660]—,'
Nilsson configuration dominates, and N= 96,
where the Fermi surface is between the [642]~+

and the [633]T+ configurations, produces a de-
crease of 6„' with mass number, which is su-
perimposed on the odd-even variation resulting
from the odd-even variation of A. w, . It is empha-
sized that 6„ is a parameter in the CSM calcu-
lations and, therefore, is not only model depen-
dent, but also depends on the values of the other
parameters in the calculations. Even the magni-
tude of such b,„~values, however, becomes
plausible when compared to 6„'s obtained from
the odd-even mass differences, 6„—see Fig.
2(c). For N=98-102, where the deformations
are stable, the values of 6„ for even-even nu-
clei agree with 4„. For N=90-94, where defor-
mations are rapidly changing and where the nu-
clear masses are not known but are taken from
systematics, there is no detailed agreement; how-
ever, the general decrease in the magnitude of 6„

with increasing K is reproduced. The increased
magnitude of A„near N = 90, which is the result
of a local increase in the number of states near
the Fermi surface, is reproduced in BCS calcu-
lations. "

Evidence for a reduction of 6„ in odd-N nuclei
as compared to seniority-zero bands in even-even
nuclei also has been obtained from the analysis of
moments of inertia, n -decay intensities, and two-
neutron transfer cross sections. " It is difficult,
however, to obtain quantitative results from the
analysis of the moments of inertia and two-neu-
tron transfer due to additional contributing ef-
fects. An =30/g reduction in 6„ is indicated from
n-decay intensities for actinide nuclei, but such
studies are not possible for rare-earth nuclei.
The reduction of A„due to the "blocking" of the
appropriate orbit. near the Fermi surface is cal-
culated" to be =200 keV.

The present results indicate that it also would
be necessary to use a reduced ~„ in CSM calcu-
lations for multi-quasineutron configurations in
even-N nuclei. The value of A„apparently does
not depend upon the proton number. Therefore, no
problem is involved in the use of a full-strength
pairing-gap parameter in CSM calculations to re-
produce the second "backbend" in the yrast band,
if the explanation of this feature is the alignment
of a pair of quasiprotons.

In summary, an empirical odd-even neutron-
number dependence of the angular frequency for
the alignment of the first pair of i,~, quasineu-
trons is established. This behavior is explained
by a reduction of 6„ for odd-N systems as com-
pared to the seniority-zero neutron configurations
in even-N nuclei. A comparison of the magni-
tudes of the CSM A„necessary to reproduce the
crossing frequencies with values of 6„ from odd-
even mass differences indicates that it may be
possible to obtain quantitative values of 4 from
the crossing frequencies of quasiparticle bands.
The agreement between h„and A„also indi-
cates that 6„ is not strongly dependent upon 5u
for values of 5+ & Ace, . The loss in neutron pair-
ing apparently is associated with neutron align-
ment and independent of proton alignment. It
should be possible to reproduce the observed odd-
even neutron-number systematics of the band-
crossing frequencies in self-consistent calcula-
tions.
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