
VOLUME 47, NUMBER IO PHVSICWI. REVIEW I.ETTERS

Two-Impurity Kondo Problem
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The two-impurity Kondo problem is studied by use of perturbative scaling techniques.
The physics is determined by the interplay between the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction between the two impurity spine and the Kondo effect. In

particular, for a strong ferromagnetic RKKY interaction the susceptibility exhibits
three structures as the temperature is lovrered, corresponding to the ferromagnetic
locking together of the two impurity spine followed by a two-stage freezing out of their
local moments by the conduction electrons due to the Kondo effect.

PACS numbers: 75.20.Hr, 72.15.Qm

In this Letter we discuss the possible tempera-
ture-dependent susceptibilities for two Kondo im-
purities separated by a distance R imbedded in a
metal of noninteracting conduction electrons. The
various behaviors depend on the relative magni-
tude (and sign) of the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction compared with the
Kondo temperature of an isolated impurity.

The essential ingredient of this work is the abil-
ity to trace the evolution of an effective Hamil
tonian that describes successively lower energy
(and hence temperature) scales. For a given tem-
per
by i
hol
ing
abl
Ha
we
int
the

I

vant energy scales are well separated and can be
estimated analytically.

We start with two spin- Y impurities 5, (i = 1,2)
at R, =R/2 and R, = —R/2, respectively, and a
conduction-electron Hamiltonian H, &(D,) corre-
sponding to a half-filled band of energies -D,«
D„with a. constant density of states p. If s& is

the conduction-electron spin density at the site
R;, then the starting Hamiltonian, corresponding
to cutoff D„ is

H(D, )=H„(D,) —J,(s, K, +s, 5,),

We can show that O', —=J, —= (J,+J.)/2 =—J/2, where to second order J satisfies the recursion relation
[with J(D,) =J,]

(pd)/Jldn(D /D) =- (pJ)2.

Further, I is just the RKKY interaction, given by

I —= (J,)'Qn, exp(ik ~ R) Q(1-n, ) exp(-ik' ~ R)(e„-e„) '
k

ature T, the effective Hamiltonian is obtained where J, is assumed to be negative (antiferromag-
ntegrating out the conduction electrons and netic).

es of energy bigger than a cutoff D = 10T. Us- Ttoo impurity lo-cal moment (ZI.M) regime
a thermodynamic scaling method, "we are [max(2~ I ~, 10T K) &T].—If we integrate out the

e to describe the variation of the effective higher-energy conduction electrons and holes
miltonian with decreasing cutoff. In this Letter down to a cutoff D = 10'&D„ then we generate an
exhibit only the most important interactions effective Hamiltonian H, &M(D) with a changed val-
he effective Hamiltonian. Further, we choose ue J(D) of the coupling J„aswell as new inter-
parameters of the problem so that the rele- actions not present in (1). Keeping only the most

important of these interactions, ' we have

H2LM(D) =H~~(D) —I5, .52 —J,(s~+s~) (S, +Bs) —J,(s, —ss) ~ g, —Ss). (2)
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with the integration range restricted so as to ex-
clude the region where both I e„—&r I and I &~
—er I lie between 0 and D.

We note that two important characteristic ener-
gy scales have naturally arisen in the renormal-
ization process. The first is the Kondo tempera-
ture

T K Do-exp(l/pZ, ),
which is the energy scale at which Eq. (3) breaks
dowown. In the absence of any other effect, this is
also the temperature at which the local spins
would be screened by the conduction electrons
(i.e. , the Kondo effect).

The second important energy scale is the RKKY
interaction I itself. Figure 1 depicts f(D= 0)

or two model band structures (see figure
I vs

b
caption . For small kFR, I is ferromagnetic a

oth the local moments then interact with essen-
eic as

tially the same conduction electron. For large

4'FR . F
&FR, I oscillates with an envelope that fall ffso as
( r ) . For D «D„ the D dependence of I(D) is
quite negligible. '

At high temperatures [D,&T» max(21 I I, 10TK)],
the 2LM regime is obtained. Then II/Dl and I

pJ'I

are small compared with unity and thermodynam-
ic properties can be calculated by treating all the
interactions in (2) perturbatively. For instance,
the susceptibility is given by Tg;~ /(gp. )'= ''1
+I/4T + J)+ ' + p ~, where the zeroth-order term corre-

cross', ,

' cross I

2 FI'
, over ', SQ 2 ' over '

I I I

FF2
Icf ossi
,
' over' 2 LM

sponds to two free local moments.
But as T decreases, and hence D(since we al-

ways take D=10T), either II/Dl or I pJ'I will be-
come large, whence there will be a crossover to
new regimes of behavior. Two possible charac-
teristic cases are easy to discuss. In case A. ,
II «T K. Then I pJl grows to order unity while
I/D I remains small, whence the Kondo effect

suppresses the local moments, and the RKKY
interaction plays a very minor role. The tem-
perature dependence of Tg in this case is shown
schematically by curve A of Fig. 2. In case B,
I is antiferromagnetic and -I» I' K. In this case,
as T gets small compared with -I, the two im-
purity spins are locked antiferromagnetically into
a singlet. Consequently Ty drops rapidly as de-
picted schematically in curve & of Fig. 2, and the
Kondo effect plays a minor role. Note that in
case A. Tg drops slowly, logarithmically, with
temperature, whereas in case & it drops quickly,
roughly as 1/T.

Case C, when I is ferromagnetic and I» T
the m

1S

th
e most interesting, and will occupy th b lk f
e rest of this paper. As T gets small compared

with I, the two impurities are locked ferromag-
netically into a triplet state described by an ef-
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FIG. 1. The RKKY interaction I for two model band

structures. The solid curve corresponds to a linear
dispersion ep —eF =v~ {k—kF ) and a constant density of
states p; the dotted curve corresponds to a free elec-
tron band. Both bands are cut off at Do = &F = &I;&q/2.

or e o-zmpuri-FIG. 2. Schematic plots of Tg. for th bv-
ty Kondo problem for the three cases considered in
the text. In case A, where TK» I

I I, there is a slow
crossover from the 2LM to the two-frozen-impurity
(2FI) regime due to the Kondo effect. In case B, there
is a rapid crossover from the 2LM to the 2FI regime
as the antiferromagnetic RED interaction locks the
impurity spine into a singlet. In case C, that of fer-
romagneticI »TK, we have the various regimes in-
dicated at the top of the figure. The temperatures
TK~ and TK refer to this case.
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2
$sy +s2) =2u+ seven+2u sodd p

where

2u, = 1+ sin(k FR)/k FR.

Then the most important terms in IIF F,(D) are
given by

IIF F.(D) =II.i(D) -J.(D)s.,- 5

(7)

where the "starting" values for J, (D) and J (D),
at D ~I, are given by [cf. Eqs. (6) and (7)] J,(I)
= 2u, 2J,*. Furthermore, the recursion relations
for J,(D) up to second order are identical to (3).
It follows that two new energy scales now arise,
namely the even- and the odd-channel Kondo tem-
peratures:

T z, -Iexp[1/(2u, 'pJ,*)]. (10)

Thus in the FF2 regime defined by max(10TK, ) &T
&I/2, thermodynamic properties can be calculat-
ed by treating J, perturbatively. In particular,
Ty = ~ (1 +pJ,+pJ ), so that as T decreases TX de-
creases logarithmically.

If I/T K is sufficiently large, then T K, and T K

can be well-separated energy scales." In such a
case, there will be a t~o-stage Kondo effect. In
the first stage, as T approaches TK, pJ grows
to order unity while pJ, is still small. In this
crossover ~ unit of the spin-1 impurity will be
compensated by the odd-channel conduction elec-
trons, which reduces the impurity degrees of

fective spin-1 operator 5. Necessarily TX rises
rapidly (as 1/T) from a value of ~, characteristic
of the 2LM regime, to ~, characteristic of a
spin-1 impurity, as depicted in curve C of Fig. 2,
but does not reach ~, because the interactions
present in (2) generate interactions between 5
and the conduction electrons. Indeed, the effec-
tive Hamiltonian for D ~ I, i.e., just after the
crossover to the new regime, which we will call
the ferromagnetically frozen two-impurity (FF2)
regime, is essentially given by'

II„„(I)=II„(I—) —J,*(s,+s ) ~ g,

where' J,~ is J, evaluated at D =I.
Fer romagnetically frozen two-impurity (FF2)

regime (10T K& T &I/2).—For the purposes of dis-
cussing the evolution of II», (D) it is convenient
to define two orthogonal conduction-electron chan-
nels which are even and Odd with respect to the
midpoint between the two impurities; in terms of
which'

freedom to an effective spin-~ operator w. Con-
sequently, Tx drops to ~, as depicted in curve C
of Fig. 2. Note that the crossover for T-TK is a
many-body effect, and that ~ is a complicated
spin-~ object: the triplet combination of the im-
purity spins antiferromagnetically clothed by a
spin-~ cloud of odd-channel conduction electrons.

Semiquencked taboo imPu-rity (SQ2) regime (5T ~
& T &T K ). F—or temperatures well below T K,
we have a new regime, the semiquenched two-
impurity (SQ2) regime, in which the effective
Hamiltonian corresponds to interactions between
v and the even- and odd-channel conduction elec-
trons given by [compare Eq. (9)]

~Asev en ~ ~

With use of the same logic as before, just after
the crossover into the SQ2 regime, i.e., at T
& TK, J„(TK ) is essentially equal to" ~J, (TK ).
However, JF (D & T K ) is ferromagnetic, since it
is the residual coupling of 5 to the odd channel to
which it is already strongly bound antiferromag-
netically. " The recursion relations for pJ&(D)
and pJF(D) are also identical to (3), but now, as
D decreases, while I pal increases, pJF de
creases. Consequently Tg = z(1+pJ„+pJF) de-
creases slowly with temperature. When the tem-
perature decreases to" T ~ =T K exp[1/p J„(TK )],

~ pJ„I grows to order unity, and the remaining im-
purity spin ~ is compensated by the even-channel
conduction electrons. With decreasing tempera-
ture Ty drops to zero as the system crosses over
to the two-frozen-impurity (2FI) regime. See
curve C of Fig. 2.

Two frozen-impurity (2FI) regime [5T & min(T~,
T K, -I)]. For all the —cases we have considered,
in the very low-temperature regime (i.e. , for T
&&TK, —I, and TKA in cases', &, and C, respec-
tively) the impurity degrees of freedom are com-
pletely quenched. In this regime, the effective
Hamiltonian has only residual self-interactions
among the even- and odd-channel conduction
electrons. This leads to a constant susceptibility
X-1/T*, and a linear specific heat C-kB'T/T*,
where T* is the final energy scale at which the
crossover into the 2FI regime takes place (i.e. ,
T* is TK, -I, or T~ for the casesA, &, or C).

The above methods may prove useful in study-
ing concentrated systems of local moments such
as spin-glasses, valence fluctuators, and mag-
nets.
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This method is an extension of the 'poor man' s
scaling approach of P. W. Anderson, J. Phys. C 3,
2436 (1970), made in the light of the later work of
K. Q. Wilson, Rev. Mod. Phys. 47, 773 (1976).

Apart from a constant term, there are eight other
interactions not displayed in Eq. (2).

This is seen by integrating Eq. (3) to get p J(D)
=p Jo/[1+ p Join(DO/D)}, and noting that as D approach-
es TK, ~ p J [ becomes large.

For example, if RD/v„«1, one has [I(D) I (0)]/D—o

= —(p Jo} 21n2[ sin(kFR}/kpR1 (D/Do). Note that in our
model I(DO) = 0, but we could easily include a direct
interaction at the outset.

The various zeroth-order results that we quote for
TZ are easily obtained by calculating (S, ), where 8
is the total effective impurity spin, for a noninteract-
ing situation.

YThe result (6) follows from (2) by noting that& with
in the triplet subspace of the irnpurity states, (S~+ S2)
is identical to S,. S

&
—S2 is identically zero, and

I S) Sp is just a constant, I/4, which can be ignored.
~Using Ref. 4 and Eq. (6), we can estimate that

pJ, * =—pJ(I )/2 =- —[2ln(I/TK)1 '. In all estimates we
omit, for simplicity, all numerical factors multiply-
ing I, etc.

9The even- and odd-channel conduction-electron
operators to which the impurity couples are defined as
u+t)'even —=Zk cos(k R/2)ak, u &odd:+k sin(k'R/2)ak~
where u~ are normalization factors given by Eq. (8).
The conduction-electron operators at sites 1 and 2 are
hence tfr(+R/2) =u g~,„+iu g,dd. Equation (7) follows
from the definitions s& = 2 g+ (R/2) o g (R/2), etc.

~OFrom Eqs. (10) and (8) and Ref. 8, we get TK~ -I(TK/
I)'/'+, so that TK /T&, —(I/TK) ""~ ~ )/ F The en-
suing discussion refers to &FR near the first maxi-
mum in Fig. 1 where sin(kpR)/kR = —0.2. Near the
second maximum, sinkFR & 0, and hence the roles of +
and- ch~»els would be reversed.

The factor of ~ comes from projecting S into the
subspace of ~.

This point has been made in other contexts by D. M.
Cragg and P. Lloyd, J. Phys. C 12, L215 {1979), and
P. Nozieres and A. Blandin, J. Phys. (Paris) 41, 193
(1980).

'3Using earlier quoted results, we can estimate that
pJ+P'K ) =- —[(a, '-u ') ln(I/TK)] '= —{[4sin(k&R)/
k„It]in(1/T„)) ' Hence TK~ -TK (IITK) '""»
Note that TK„ is higher than TK+. TK~/Ty+ ——(I/
T ~

- si li@ F R)/k F R

740


