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Limitations of Two-Dimensional Model Equations for Ion-Acoustic Waves
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It is shown that plane ion-acoustic solitons are unstable in magnetized plasmas if the
magnetic field is greater than a critical value which roughly corresponds to the condi-
tion that the soliton width equals the ion gyroradius. On the other hand, ion-acoustic
solitons are stable if their amplitudes exceed a corresponding magnetic-field-dependent
threshold. Limitations of previous models are discussed.

PACS numbers: 52.35.Mw

It is now well known' that the weakly nonlinear
one-dimensional description of ion-sound waves
in plasmas is given by the classic Korteweg-de
Vries (KdV) equation. Solitary-wave solutions of
the KdV equation are one-dimensionally fully
stable. However, the question arises whether
this stability is preserved when weak (two-dimen-
sional) bending distortions are allowed. Two
equations were proposed for the description of
the process of propagation of a two-dimensional
perturbation: Kadomtsev and Petviashvili' (KP)
allowed for a weak transverse coordinate de-
pendence in an unmagnetized plasma. It was
shown' that this generalization leads to trans-
versely stable plane-soliton solutions. On the
other hand, Zakharov and Kuznetsov' (ZK) con-
sidered the case of very strong external magnetic
fields. According to their equation, plane soli-
tons are unstable. ' However, recent experiments'
showed that large-amplitude plane solitons are
quite stable even if magnetic fields are present.
Because of the various limiting processes (small
amplitudes, weak transverse dependence, and
vanishing or large magnetic fields) involved in
previous theories, a quantitative investigation of
this puzzling behavior has to start from a unified
description in order to answer the question of
existence of threshold in amplitude or magnetic
field. This is the first motivation of this Letter.
The second stems from a simplification inherent
in all previous two-dimensional considerations:
The small-amplitude limit" is not appropriate
for most practical applications. We also drop
that assumption here in order to study the thresh-
old behavior with respect to finite amplitudes.
Thus the stationary states under consideration
are those first found by Sagdeev' in the Mach-
number range 1 &M ~ 1.6. It should be further
noted that the two-dimensional model equations
discussed here have even broader applications.
The KP equation occurs, for example, in shallow-
water wave problems; the ZK equation has re-

cently' been obtained for vortex solitons of the
Hasegawa- Mima' type.

We describe the Sagdeev solitons by the hydro-
dynamic set of equations for ion density n and
ion velocity v. Furthermore, the plasma may be
highly nonisothermal (T, »T, ) and is situated in
a uniform magnetic field H.=Br. The character-
istic time is assumed to be larger than the ion
cyclotron period 2m/0, For small P (P=4mnT, /
P'«1) the ambipolar field is a potential field.
Then

s, n+v ~ (nv) = 0,

8, v+v V'v+V4+Qz ~v = 0,
v'4 = exp(4) -n.

(1)

(2)

(3)

Here, we use the following units: Debye length,
X, = (T, /one')' '; ion plasma frequency, v~,.
= (4zne2/m, )' '; so. und velocity, c, = (T, /m, )' ';
and potential, T, /e. The parameter Q = 0,./&u~,.

can vary from small values to order 1 for prac-
tical applications.

One-dimensional stationary solutions of Eqs.
(1)-(3) are the Sagdeev solitons' (index s); the
density n, and the velocity v, are functions of
the space coordinate z and follow from the po-
tential 4, through

n, = (1 —24, /M') (4)

(5)v, =M/n, ,

where M is the Mach number. The potential 4,
follows from the first-order differential equation

&
(C, r)2

= exp(4, )+M'(1 —24, /1'')' ' —1-M', (6)

where the prime denotes a derivative with re-
spect to z.

We now study the stability of the solutions (4)—
(6) with respect to transverse perturbations. For
that purpose we use (l)-(3) as basic equations
and not any of the weakly nonlinear model equa-
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tions. "We apply the powerful Zakharov-Ruben-
chik procedure"; it has the advantage of covering
the whole Mach-number range. Expanding all
dependent variables in terms of the transverse
wave number k, we write for the perturbations

Gn =n, '+kn, +k'n, +, Q@ =+,'+k@,+k2C, + ~ ~ ~,

A similar expansion is used for the growth rate,
y=ky + '

The first-order equations can be solved ex-
plicitly. After some algebra, we find

(7)

6v =~i 0 +kv, +k'v, + ~ .

v„=—[y, (v, —'M)+C, ]/v, ,

n, = —[y, (n, —1)+n,v, ,]/v, ,

(8)

z

i=(~/~)(sinkf- d5 f(k /k)(v v ')'+&(k /k)v ']cosg —[cos( sing]).
The ab»e»ation [a—5] means that the first term should be repeated with a and p interchanged. Fur-
thermore, —v» is obtained from (10) via [x y] and [0——g]. The argument ( is given in terms of
n, by

q' =nn, /M.

The g~o~th rate y, follows from the resolvability condition in next order. Using (7)-(10) we find
after some algebra

f [(C )„''(v-. -M)n, ]dz
a„f'"M- „(,

00

where

J= f „dzf „dk[v, (z) -M]n, (z)[v, ($) -M]n, (()sjn[y(() —q(z)].

(12)

Equation (12) is the main mathematical result
of this paper. In the following, we shall discuss
the physical implications.

First, for vanishing magnetic fields (0=0) the
situation is stable. For demonstration, we eval-
uate (12) in the small-amplitude limit where

4, = 6g'sech'gz (13)

q=-,'(1-M ')".
Then, immediately,

y =--, qk2 4 2 2 (15)

one obtains after some algebra

(n/M)J- —f'„(v, —M)n, dz. (17)

Thus, in the numerator on the right-hand side of

follows, in agreement with the Kadomtsev-Pet-
viashvili result, and no instability occurs.

However, for finite 0 the conclusion drastically
changes. To show this, we analytically evaluate
Z in the limit 0/Mg —~. Integrating by parts and
using cosx =1 —2 sin'(x/2) as well as

sin'(ncp /2M@)
Qq '/2M'

! (12), the third term cancels the second one and,
compared with the result for 0 = 0, the numerator
of (12) changes sign. That means that for finite
0 and small (but finite) parameters q instability
occur s.

In the small-amplitude limit [using Eq. (14)]
and for A/Mq -~ we now obtain from (12) the in-
stability growth rate,

This growth rate agrees with that' for the ZK
equations' for 0/7l —~.

Comparing (15) and (18), we conclude that the
mathematically correct result of Kadomtsev and
Petviashvili is physically only marginally ap-
plicable. For any 0 instability occurs if g is
small enoughl Of course, the quantitative transi-
tion from (15) to (18) can only be followed numer-
ically. The details will be published elsewhere";
here we present only the numerical results.

The calculations show a continuous transition
from stable to unstable behavior. Thresholds in
magnetic field strength and amplitude, respec-
tively, occur. In Fig. 1, we depict the instability
growth rate y/k vs 0 for various parameters q
The reverse, y/k vs q for different 0, is shown
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FIG. 1. Growth rate y/& vs magnetic field strength
~ for three parameters g. The dashed lines depict
the corresponding asymptotes for ~ /p-~ in agreement
with the results of B,ef. 4.

FIG. 2. Growth rate y/0 vs amplitude parameter rj

for three parameters ~.

in Fig. 2. The graphs show that growth rates in
magnetized plasmas differ from the ZK result
(0/q —~) by an order of magnitude. The calcula-
tion allows us to discriminate between stable and
unstable regions depending on g and 0 as pre-
sented in Fig. 3. Roughly speaking, solitons are
stable (unstable) when the width X, q

' is smaller
(larger) than the ion gyroradius p, = c, /0&.

These results can be understood physically as
follows. As can be seen from the linear part of
the dispersion relation, an external magnetic
field changes the transverse dispersion proper-
ties, i.e., v, ,&0 (&0) and dv, ,/dk, &0 (&0) for
0 = 0 (0-~). Then, in a frame moving with the
linear group velocity v, , any modulation of ampli-
tude A in the transverse direction will decrease
(grow) since because of nonlinear effects Bk,/Bt
-—BA. /Bx~ for &u (nonlinea, r) -A. . Thus locally a
transfer of energy occurs to the troughs (crests)
of the modulation. The (one-dimensionally stable)
solitons will feel the transversely destabilizing
effects if the characteristic time for longitudinal
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FIG. 3. Borderline of stable and unstable behavior
in the (&, g) plane.
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pressure balance (X, rt 'c, ') exceeds the gyrotime
(0,. '), i.e. , for 7) &A.

In summary, we have shown that the two-
dimensional dynamical behavior of ion-acoustic
solitons is in general more complicated than as-
sumed previously. "We have demonstrated that,
even for small amplitudes, only in the cases 0
=0 and 0/q-~ do the KP and ZK model equations
apply. For (small but) finite 0, both limits are
not adequate, in general. By detailed numerical
computation we have found the transition from
stable to unstable behavior. For fixed g, there
exists a threshold Q~ =q in 0; for 0&Q~ insta-
bility occurs. The instability growth rates are
typically larger than those obtained from the ZK
equation by a factor 10. On the other hand, for
fixed 0& 0, there exists a threshold g~ =0 in g;
for q &@~ solitons are stable. This explains ex-
perimental observability of solitons in mag-
netized plasmas.

Finally, there are some straightforward (but
algebraically complicated) and interesting ex-
tensions of the present work. For example,
higher-dimensional soliton solutions" should be
investigated. Future work will be devoted to
these topics.
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