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By limiting attention to the lowest-order Fourier modes we obtain a theory of the
Fermi-Pasta-Ulam recurrence that gives excellent agreement with recent numerical
results. Both the predicted period of the recurrence and the temporal development of
the» = 0 mode are very good fits. The maximum of the~ = 1 mode, however, is off by
about 30%. (The nonlinear Schrodinger equation governs the development of the enve-
lope of the electric field of a nonlinear Langmuir wave in the plasma-physics context.
It also describes gravity waves in deep water.)

PACS numbers: 52.35.Fp, 52.25.Ps

Recently Yuen and Ferguson' demonstrated the
Fermi-Pasta-Ulam (FPU) recurrence® for the
nonlinear Schrodinger equation, which equation is
of primary importance in plasma physics and
fluid dynamics. The essence of the recurrence
phenomenon is that linearly unstable modes dem-
onstrate a “superperiodicity” on a sufficiently
long time scale when treated nonlinearly. When
this superperiodicity is common to all Fourier
modes, the initial conditions will be reproduced
every once in a while.

To start the FPU recurrence off we need a
linearly unstable mode. In the case of the non-
linear Schrodinger equation this indicates wave
number % in a range 0<k2<k_.. Recently Rowlands
and Janssen® independently used the fact that for
k very near k. calculations can be somewhat sim-
plified. They obtained the long-time behavior of
the modulation of the linearly unstable mode in
this limit. However, as both authors pointed out,
their approach could only lead to a qualitative con-
firmation of the numerical results of Yuen and
Ferguson, as none of the 2 values used by those
authors was sufficiently near k.. In this Letter
we give a more general calculation in which %z is J

not restricted. The results of Rowlands and
Janssen are recovered as a limiting case, and
the numerical findings of Yuen and Ferguson are
described quantitatively as well as qualitatively.

We take the cubic nonlinear Schrodinger equa-
tion in the form

i(A/at) - £(3%°A/0x?) - 5| Al*A +4a2A =0 (1)

[obtained from the more common form, in which
the last term is absent, via the substitution a
=exp(—ia,2t/2)A), and assume

A =A,() +A_ (t) exp(=ikx) +A (t) exp(ikx),

(2)
A,0)=a,, A.,0)=4,(0)=a,.

For a, =0 the constant solution is exact. Our cal-
culation is easily extendable to A.,(0) #4,(0). We
neglect the generation of modes ~ exp(inkx), n=>2
but do not assume either k. —% or | A,/A,| small.
This method is sometimes used in fluid dynam-
ics.t (If we did take |A,/A | small and linearized
around a,, we would obtain linear instability of
the n =1 modes with &, =2V 2a,.)

Equations (1) and (2) yield, for the time develop-
ment of the » =0 mode,

A, +3aAg =FAZAF +A_LAAF AL A KA A A A K ®3)
and two similar equations for the development of A-; and A,. All three can be obtained from a Lagran-
gian

] 1 . . )
L=5 3 UA, A + D (Gl +3070)| A2 = 3 DA~ T 142412~ 3F, @
1=-1 1 1 i<j

F=AXA_A +A_*A *A 2, F(0)=2aa,’.

Time invariance yields Noether’s theorem in the form

1 . .
23A Lz +A*L s> — L) =const,

1=-1
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(5)

717



VOLUME 47, NUMBER 10

PHYSICAL REVIEW LETTERS

7 SEPTEMBER 1981

whereas invariance under the phase transforma-
tion A, ~ A, exp(éi€,;), 2¢,~€, — €, =0 yields the
Noether equation

1

2i(€, Ay Lg, =€, A *L;,2) =const. (6)

I1==1
Using Eqs. (5) and (6) (the latter in two versions,
one with all €; equal, and the other with €,=0, €,
=—€_,) we obtain three distinct conservation
laws. These are best expressed in terms of the
deviation of |Ay|? from its initial value,

x =a2 -] A%

They are
lA. 1|2 = lAllz =‘112 +'é'x,
F=3x%+ (§r*—a? +a,®)x +2a%a,”.

K we now multiply (3) by A,* and subtract its com-
plex conjugate, square the result, and express

all quantities in terms of x and known constants,
we obtain

2 =4|A YA |t -F?
=gl =x) (0 =x,) (v —x5) (v —x), (7
x,=(R?=4a,2=VA)/2, A=(k?-4a,?)?+64aa?
x,=0, x,<x<x; whenx;>0,
X3 =%(2a,% = 3a,® - £7),
%= (k% = 4a2 +VA)/2.
Equation (7) can be solved to give
x =x,%5 s020m |at) /Ly sn?(m | at) +x, —x,],
m =lgley =x,)/x, 005 —x) 112,
o =[x,k —x,)/82]"2,

The superperiod is T =2K(»)/«, and the maxi-
mum deviation of |A,|? is x,. For 2>k 2 +2a,>
the FPU recurrence will not occur. This gener-
alizes the cutoff of linear theory #.2. There.are
complications for % < £, found numerically' but
not recovered by our theory, as the interplay with
higher modes is involved. Finally we note that
Janssen’s equation [Eq. (16b) of Ref. 3] is recov-
ered from our Eq. (7) by taking 2, ~% -~ 0.

We are now in a position to compare our results
with those of Yuen and Ferguson' (case 1, for
which those authors give the most detail). To do
this take a,=1, a, =0.05, and 2 =2. Figure 1 gives
‘the comparison. Of course the n =2 and n =3
modes are absent from our theory and that is its
main shortcoming. On the other hand the period
T is seen to be an excellent fit (within 1%). Ne-
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FIG. 1. Normalized energy content of the lowest-
order Fourier modes: (a) according to Yuen and Fer-
guson and (b) as predicted by theory for the same ini-
tial conditons. Difference in T cannot be seen on this
scale.

glect of higher-order modes does not seem to af-
fect T at all, no doubt because of enslavement
(following of the » =1 mode by those of higher or-
der). Also, and perhaps more surprisingly, the
dip in the energy content of the » =0 mode x; is
also a good fit (correct within a few percent).

The maximal energy content in the » =1 modes,

on the other hand, is down by about 30%. This is
not surprising, as the interplay with higher modes
has been neglected.

In conclusion, we now have a quantitative theory
of the Fermi-Pasta-Ulam recurrence for the
nonlinear Schrodinger equation, at least for
5k,<k<k, Work on inclusion of » =2, and hence
a more realistic treatment of 0<k< %k, is now
underway.
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