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Example of a Negative Effective Poisson's Ratio
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An effective Poisson's ratio is introduced for anisotropic materials as the negative
ratio of transverse and longitudinal strains averaged over all transverse directions.
It is shown that for certain. orientations of the applied force this effective Poisson's
ratio assumes negative values for e-quartz. This implies that such a bar increases its
cross section under length extension.

PACS numbers: 46.30.Cn, 03.40.Dz, 62.20.Dc

Poisson's ratio p. for isotropic bodies is gen-
erally assumed to be positive and smaller than
0.5. While the upper limit may be derived from
thermodynamics, the lower limit of zero is mere-
ly a matter of experience. In some renowned text
books (e.g. , Landau and Lifshitz' and Feynman,
Leighton, and Sands') it is rema, rked that p, might
theoretically be negative down to a value of —1,
which would imply transverse contraction associ-
ated with longitudinal compression. It is added
however, that no material with negative p. is actu-
ally known. This last observation, however, is
not an absolute one. In fact, by including aniso-
tropic bodies, at least one example may be given
for a longitudinal extension being accompanied by
an increase in cross section.

The concept of Poisson's ratio has been gener-
alized for anisotropic media. " Denoting the in-
finitesimal strain components as referred to the
Cartesian crystal axes x„x„and x, in abbrevi-
ated notation by S, , generalized Poisson's ratios
are given by

With use of the general transformation equa-
tions given by Cady' it may be shown that

, '= —(s„'+s„')/2s„'. (4)

with axes parallel to the edges of the bar and with

x, ' taken as the length direction, rotated with re-
spect to x„x„and x, (Fig. 1). All quantities
referred to the primed system are also written
with primes.

A generalized Poisson's ratio as given in (1)
for two specific transverse directions may, of
course, be defined for an arbitrary lateral direc-
tion. That means that it can be given as a func-
tion p, , '(p) of an azimuthal angle y in the x, 'x, '

plane, describing a rotation about x, '. We now

define the "effective Poisson's ratio" p, , ' as the
average value of p., '(y) over all transverse di-
rections:

p, ,= —S,. /S, . (i, j=1,2, 3; i'),
where index j indicates the direction of the ap-
plied force. Making use of a linear stress-strain
relation p, , may be expressed in terms of the
compliances s,, :

~i~= —say/sg~ ~

It is known that for a host of crystals certain
p, ,&

are negative. From this fact alone, however,
no judgment on overall expansion or contraction
may be made. The general impression seems to
be that "anomalous" expansion in one direction
is more than compensated for by "normal" be-
havior in the direction perpendicular to it. For
most known materials this is so. In the case of
n-quartz, however, there is an exception.

In order to demonstrate this, we consider a
general orientation of the crystal bar. We use a
Cartesian coordinate system x, ', x, ', and x, '

X,

FIG. 1. Orientation of specimen crystal with respect
to Cartesian crystal axes x&, x» and x3.
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Since for n-Quartz (and other crystals of classes 32, 3m and 3m) p, , ' turns out to be symmetric about
the x,x, plane, all extrema must occur if the direction of the applied force lies in this plane. It is
therefore sufficient to consider bars singly rotated about x, through an angle $ as indicated in Fig. 1.
The primed compliances are given by'

s„'=s» sin' $+ s» cos'$ —s„sin( cos $,

s»'= s„(cos'$+ sin'$) + (s»+ s» —s«) cos'$ sin'$+ s„sin) cos $ cos2 ),
s»'= s» sin'$+ s» cos'$+ (2s»+ s«) cos'$ sin'$+ 2s„cos $ sin'$.

(5)

With use of numerical data from McSkimin,
Andreatch, and Thurston' for the s, , (adjusting
the sign of s„ to conform to the new Institute of
Electrical and Electronics Engineers standard on
piezoelectricity') p, , ' was calculated as a function
of $. The results are shown in Fig. 2. It is seen
clearly that in the angular range 36.1 & $ &71.2
the effective Poisson's ratio is negative. The
largest negative value is taken on for ) = 53.9'.
With the previously accepted convention' of Insti-
tute of Radio Engineers standards on piezoelec-
tric crystals (1949) these values of $ are to be
replaced by their sdpplementary angles. For
most of the angular range given above both p, ,3'
and p»' are negative such that a bar stretched in
this direction. will expand in all lateral directions
simultaneously. The effect is a large one and

may not be explained by an unfortunate combina-
tion of measurement errors. In fact, differences
between compliances at constant electric field
and at constant dielectric displacement or be-
tween isothermal and adiabatic values as well as
the use of data from different authors do not

change the results for p,, ' on a scale demonstra-

0.1

80'

—0.1-

FIG. 2. Effective Poisson's ratio p, 3' for o.-quartz as
a function of rotation angle $ as calculated with iso-
thermal compliance constants from H, ef. 5 with axes
chosen according to IEEE standard on piezoe1ectricity
(1978) (Ref. 8).

! ble in Fig. 2.
The effective Poisson's ratio as introduced

above has a direct physical meaning: It is a
measure of the relative change in cross section.
If we denote the cross section normal to x, ' by
A, ' its relative change is given by

rhA, '(A, '= S, '+ S, '.
Hence, from (2) we get

aA, '/A, '= —2), 'S, '.
Thus, whenever the effective Poisson's ratio is
negative, this means an increase in cross section
under extension.

A check on other trigonal crystals, using data
taken from I.andolt-Bornstein, ' revealed that this
behavior is not very common. While for several
crystals p., ' closely approaches zero for $ be-
tween 50 and 60', it nevertheless remains posi-
tive in all of them. Although the basic facts have
been known for a very long time, this exception
for quartz seems not to have been noticed before.

The reason for this difference must be due to
the numerical values of the compliance constants.
It appears that o. -quartz is distinguished by a
fairly large value of s,4 as compared with other
crystals and that the behavior described above is
dominated by this constant.

Although it is probably just a coincidence, it is
interesting to note that throughout (but not con-
fined to) the range of directions of stress result-
ing in such anomalous lateral expansion e-quartz
shows a certain instability. Stress of this orien-
tation easily leads to secondary Dauphin's twin-
ning, i.e., a reversal of the x, axis. By this
process the crystal reorients itself so as to ren-
der lateral expansion normal. Interestingly the
twinning tendency is also governed by s,4.

One might also raise the question if there is a
connection between this unusual mechanical be-
havior of quartz and its piezoelectricity. The
available data give no indication for this: About
one third of the trigonal crystals checked by us,
which do not shorn this effect, are piezoelectric,
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some of them much more strongly than quartz.
Their behavior in this respect appears not be
distinctly different from nonpiezoelectric ones.
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A numerical simulation of the lower-hybrid drift instability is carried out in which
an electric drift toward the neutral sheet is present. It is found that lower-hybrid
drift waves, which are excited usually in a transient fashion and decay to a low level
in a closed system, are reexcited and execute recurrent growth in the presence of
particle drift toward the neutral sheet. Consequently, anomalous resistivity also ex-
hibits a recurrent generation.

PACS numbers: 52.65.+z, 52.35.En, 52.25.ri

In laboratory and cosmical plasmas, anomalous
resistivity associated with microscopic instabili-
ties is an important subject. Computer simulation
is known to be a powerful tool to study this type
of microscopic process. In fact, a large number
of numerical simulations have been carried out
and have brought many fruitful results. However,
except for a few cases, ' they are restricted to a
conserved system. Not only in a cosmical plas-
ma but also in a laboratory plasma, however,
there usually exists an external source that sup-
plies energy and/or pa.rticles, and often the
presence of such a source plays a crucial role
in the ultimate fate of phenomena occurring in
the plasma system.

In this Letter, we deal with lower-hybrid drift
(LHD) waves which are thought to generate anom-
alous resistivity. In the neutral sheet of the mag-
netosphere, the anomalous resistivity could stimu-

late magnetic reconnection leading to magneto-
spheric substorms. ' In a pinch experiment, LHD
waves are said to lead to a rapid diffusion in the
implosion phase. '

Previous simulations of LHD waves in a con-
served system have shown that LHD waves are
excited near the neutral sheet but subside within
several lower-hybrid periods. " Thus, the
associated anomalous resistivity can have power
only for a short period. Incidentally, it is said
that this happens for drift waves which are thought
to cause anomalous diffusion in tokamaks. ' If
so, however, the role of anomalous resistivity
would be vanishingly small in practice. Thus,
we must abandon the idea that LHD-wave-induced
resistivity could play a stimulating role in the
magnetic reconnection process in a collisionless
plasma. In a real plasma in which we are here
interested, such as the magnetospheric neutral
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