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It is shown that proper treatment of the nonlocality of the nuclear optical potential re-
solves much of the apparent discrepancy between previous theoretical calculations and
empirical values of the nucleon mean free path.

PACS numbers: 21.10.-k, 24.10.Ht, 24.90. + d

One of the most fundamental properties charac-
terizing the propagation of a particle in the nu-
clear medium is its mean free path. Hence, it
has been a serious problem that past theoretical
calculations have appeared to yield a mean free
path of roughly 3 fm for nucleons of energy 50-
150 MeV whereas the experimental value in this
energy range is approximately 5 fm. ' ' Since
the simple physical argument that A. should be
(op) ' times a correction factor for Pauli block-
ing4 yields qualitative agreement with detailed
numerical calculations, it has been puzzling that
such a large discrepancy with experiment exists.

In this note, we show that the bulk of the ap-
parent discrepancy is resolved by taking proper
account of the nonlocality of the optical potential.
Since our purpose is primarily pedagogical, no
new detailed calculations are presented, and
numerical results are taken from the extensive

E = k2/2m + Z(k, E) .

The self-energy is in general complex, and it
will be useful to write

Z(k, E) -=U(k, E) + i W(k, E), (2)

review article of Jeukenne, I ejeune, and Mahaux. '
Furthermore, for simplicity, since the magni-
tude of the imaginary potential is small compared
to the relevant energies, we shall expand all re-
sults to first order in the imaginary potential.

The propagation of a nucleon in a nucleus is
specified by the proper self-energy Z of the one-
particle Green's function, which is equivalent to
the optical potential. ' In translationally invariant
nuclear matter, the self-energy is a function of
the energy E and momentum k, and the propaga-
tion is described by the dispersion relation
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where W is negative for k above the Fermi mo-
mentum. In the case of scattering theory, the
dispersion relation (1) is solved for real E, k
is necessarily complex

k =—k„+ik~,

and the imaginary part yields the mean free path

k~ = 1/2A. .

and a k mass

Then, the total effective mass is the product

(12)

E =ko'/2m+ U(ko, E)

with the familiar result

ko = (2m[ E —U(ko, E) ]) ~2 .

(5)

(6)

Assuming W is small relative to E —U, which is
well satisfied for the energies under considera-
tion, the next approximation is obtained by ex-
panding around k0 and retaining corrections of
first order in W

~U
+ — (k~-ko+ikq) + W(ko, E) +.

00

with the result

k~ =ko = (2m[E —U(k~ E)]]~', (8a)

BU '

k, =-W(E, ks) ~+— (8b)

A first approximation to solving the full disper-
sion equation (1) is obtained by neglecting the
imaginary part as in Ref. 5, in which case one
obtains

It i~shown in Ref. 5 that in lowest-order Brueck-
ner theory, for E &k „, m~/m is signficantly
greater than 1 and m~/m is much less than 1,
yielding a product m*/m that is somewhat less
than 1. From Eqs. (4), (8b), and (11) it follows
that

g =1/2k& = —kz/2m„W(E, kz) . (13)

Since at low energy, m, /m is of the order of 0.6,
the mean free path in Eq. (13) is 67% larger than
the conventional result for the mean free path
obtained by ignoring the &U/&k term in Eq. (7)
and thus replacing m, in Eq. (13) by m. If one
wishes to compare a theoretical W(E, ks) with
the imaginary part of a phenomenological local
optical potential, W~(E), it is evident from Eq.
(13) and the preceding arguments that (m~/m)
& W(E, k „), rather than W(E, k ~), should be com-
pared with W~(E).

A different, but equivalent, way to obtain the
result in Eq. (13) is to consider the dispersion
relation, Eq. (1), with real k and consequently
complex E. This case arises, for example, if
one inserts a complete set of states in the Green's
function to obtain the Lehmann representation,
and the imaginary part of E specifies the quasi-
particle lifetime. Expanding to the same order,
one obtains

At this point, it is useful to recall the defini-
tions of three distinct effective masses from Ref.
5. The total effective mass m* is defined to re-
produce the density of states specified by Eq. (5)

Eo — ~ + U(k, Eo)—zI k' zF ~U

0

+i W(k, Eo)

with the result

k dE k BU BU dE+ ~ +m* dk m ~k &E dk 0

(15)

k m U &U If the quasiparticle lifetime is F, the mean free
path is

m /m -=(1 —sU/sE) (10)

Since m*/m is given by the product of terms in-
volving partial derivatives with respect to ener-
gy and momentum, it is useful to define an E
mas s

X=v/r,

where the group velocity u is

dZ k k m m
dk m* m m„m~.

(16)

(17)
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A. ~ = -ks/2mW(E, k~) (18)

includes the Pauli principle but neglects the fac-
tor m„/m in Eq. (13) which accounts for the non-
locality of the optical potential. The values for
A, ~ plotted in Fig. 1 are calculated according to
Eq. (18) using lowest-order Brueckner theory re-
sults for W(E, ks) from Fig. 23 of Ref. 5. These
values display the usual problem of yielding
roughly 3 fm instead of the 5-fm result deter-
mined empirically. Finally, our nonlocal result,
Eq. (13), is plotted in Fig. 1, using values of m, /
m from Fig. 18 of Ref. 5 and one observes that
inclusion of the nonlocality produces qualitative

Combining Eqs. (10), (15), (16), and (17), the
formula (13) for the mean free path is again ob-
tained.

To appreciate the quantitative effect of various
contributions to the mean free path in nuclear
matter, it is useful to compare three distinct
approximations to the nuclear mean free path
with the experimental data in Fig. 1 determined
from reaction cross sections. ' The first approxi-
mation, (op) ', where o is the average of the
n-p and p-p cross sections is much too small
because of the neglect of the Pauli principle.

The local expression for the mean free path

F. =k'/2m+ U, +iW, +(U, +iW, )k'.
In this case, the k mass defined in Eq. (11) is

1/2m „=1/2m + U,

and the mean free path calculated from k~ is

(19)

(20)

2m ~ Wc + 4m „(E—Uo) W2
' (21)

where

(22)

agreement. Given the limitations of lowest-order
Brueckner theory, our expansion to first order
in 5', and the ambiguities in extracting a mean
free path for nuclear matter from scattering
from finite nuclei, it is not surprising that some
discrepancies remain, especially in the energy
dependence. Nevertheless, we believe that Fig. 1
clearly demonstrates that the effect of nonlocality
in increasing the mean free path is qualitatively
as important as the Pauli principle, and resolves
the bulk of the discrepancy between theory and
experiment.

In the special case of purely quadratic momen-
tum dependence in the real and imaginary parts
of the optical potential, the dispersion relation
may be written

4—
X(~m)

I s «& I

50 100 I50
E (MeV)

FIG. 1. Comparison of three approximations to the
nucleon mean free path with the ra~~e of values {shaded
band) compatible with reaction cross sections for Ca,
Zr, or Pb in Ref. 2. The short-dashed curve denotes
{cp) ~, the long-dashed curve represents the local re-
sult &z of Eq. (18), and the solid curve indicates the
correct nonlocal expression X of Eq. (13).

One can show, as for example in Ref. 5, that 8',
is positive so that the two terms in the denomina-
tor of Eq. (21) have opposite signs. Because (E
—U, ) is very large, the second term can signifi-
cantly affect the mean free path and thus Eq. (21)
superficially appears to differ from our general
result, Eq. (13). The apparent inconsistency is
resolved by expanding the optical potential
around k„ instead of k =0.

In finite nuclei, the microscopically derived
nonlocal optical potential may be related to the
phenomenological local potentials used by experi-
mentalists through a suitably defined equivalent
local potential. Of particular interest to us is the
value of the imaginary part of the equivalent local
potential in the nuclear interior, which reflects
how the nonlocality increases the mean free path.
For simplicity, we consider the case in which the
nonlocality is approximated by quadratic momen-
tum dependence, as in Eq. (19):
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Since this form of nonlocality is utilized in a
variety of effective interactions of the Skyrme
form' and may be derived by the density matrix
expansion, ' we believe it is sufficiently accurate
to elucidate the essential physics. Defining the
quantity f by

(24)

and an equivalent local wave function y by

V(r) -=[f(r)1~'9(r),

Eq. (23) becomes

1 1 1V'f 3 Vf'V' — ————— +E(1 —f)2m 2m 2 f 4 f

(25)

+f(UO+iWO) Iy=Ey (26)

and f may be expanded to first order in W, to ob-
tain

m (r) . 2m„(r)'W, (r)
m m

(27)

where m~(r) is defined by Eq. (20). The V~f and

(Vf)' terms in Eq. (26) contribute to the surface
potential and are presumably adequately param-
etrized by the phenomenological surface terms
included in experimental analyses. The real and

imaginary parts of the volume term of the equi-
valent local optical potential are, therefore,
specified by

U = Re[E(1 —f) +f( Uo +i Wo) ]

prefers to think in terms of wave-function sup-
pression, then Eq. (25) requires that the nonlocal
wave function g be suppressed relative to q, so
that a large nonlocal 8', is required to accomplish
the same absorption as O' . Alternatively, one
may view the phenomenological analyses as a
totally artificial transform of the real nonlocal
physics, in which case Eqs. (28) and (29) show
ho& to properly invert the transform. In either
case, one sees that the equivalent local potential
leads to the same conclusions as the nuclear
matter analysis, and this feature will naturally
occur in more general nonlocal potentials for
which the construction of the equivalent local
potential is more complicated.
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Note added. =subsequent to the completion of
this work, we became aware of related work by
Fantoni, Friman, and Pandharipande. '

(28)

and

W
"= Im[E(1 f) +f ( U,-+ i W, ) J

2 W'

(29)

Thus, one observes directly that W ", which is
to be compared with empirical data, is reduced
relative to W, by the k-mass factor m„/m as
well as the extra term appearing in Eq. (21)
which is characteristic of a quadratic expansion
about k =0. Substitution of Eqs. (28) and (29) in
the formula for the mean free path in a local po-
tential precisely reproduces Eq. (21) as it should
given the equivalence of Eqs. (19) and (23).

It is a matter of taste how one interprets the
physics of the equivalent local potential. If one
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