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Critical Properties from Monte Carlo Coarse Graining and Renormalization
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The distribution function Pz(s) of the local order parameter s in finite blocks of size I"
is studied for Ising models for dimensionalities d =2, 3, and 4 by Monte Carlo methods.
A real-space renormalization group based on phenomenological scaling yields fairly ac-
curate results for rather smally (e.g. , the standard exponents P and v for d=3 are found
as 2P/v=1. 03+ 0.01, 1/v=1.60+ 0.05j. The method can easily be generalized to arbitrary
Hamiltonians, including spin dimensionalities n ~ l.

PACS numbers: 75.30.Ds, 05.50.+q, 75.10.Hk

Recently numerical real-space renormalization
group (RG) methods have yielded accurately the
critical behavior of a variety of models. ' " Night-
ingale's' RG (based on finite-size scaling" ),
where a fixed point of the scaling relation gz (K)
=b(», (K'') for the correlation length gz(K) of an
(otherwise infinite) strip of width L at coupling
constant K is studied for scale factors b - 1,
needs transfer matrix methods and thus is re-
stricted to both d =2 and models with discrete de-
grees of freedom (such as Ising and Potts models,
etc.). The Monte Carlo renormalization group
(MCRG), ' 'o on the other hand, can also be applied
to higher d.' Apart from the special d =2 Heisen-
berg model, ' applications to models with con-
tinuous degrees of freedom are not yet very suc-
cessful. " Disregarding polymer studies, ' all
real-space RG studies do not exhibit a truly
Gaussian fixed point. Thus it is worthwhile to
construct still another version of MCRG, which
is well suited for studying systems at 4 =3, in-
cluding continuous degrees of freedom.

In the present work, this problem is treated by
a phenomenological RG of the order-parameter
distribution function Pz(s) and its moments. As
a motivation, we recall the field-theoretic RG ap-
proach" " in a form appropriate for a Monte
Carlo calculation in real space: Dividing the (Is-
ing) ferromagnet into blocks of size L", the spin
field representing the magnetization of the blocks
1s;}is governed by the probability

P ((s;)) exp[-Wr. w(Is;))~,

Ar. w(ls~)) =E(res; +ups; +vzs; + . )

+ Q Cz(s; -s,.)'+ ~ ~ ~,

with &i,j& denoting a summation over nearest-
neighbor blocks. One now wishes to study the
change of the parameters tr , z, uzCvzzj
characterizing the Ginzburg-Landau-Wilson Ham-

iltonian upon changing the length scale, and to
study the approach towards the fixed point. Clear-
ly, there would be several useful applications of
an explicit realization of such a coarse graining
by Monte Carlo method: (i) For a given micro-
scopic Hamiltonian, the set of "initial values"
(rz, uz, vz, Cz, J. of the RG transformation can
be identified. We suggest the application of this
method to cases where it is uncertain to the vi-
cinity of which fixed point certain Hamiltonians
belong. (ii) Using blocks to size L = $ (K) or
larger one gains information on the coarse-
grained free-energy functional to be used in stud-
ies of nucleation and spinodal decomposition. "'"
(iii) Critical properties (exponents, critical tem-
perature T„etc.) can be found from the behavior
near and at the fixed point.

It is only this last application which is presented
here. In addition, rather than considering the
full distribution Pz((s;j) it is more convenient for
numerical work to restrict attention to the re-
duced distribution Pz(s) of only one block. This
function, whose fixed-point behavior is crucial
for understanding structural phase transitions, "
is also well suited for a RG analysis. Rather
than fitting parameters rz, u» and vz to Pz(s),
we study the moments & s'&z = fds s" Pz(s), h =2,
4, 6, ..., and the lowest-order cumulants such as
U = I - (s'& /(3& '& '), V = I - &s'& /(2& '& ')
+&s'&z/(30&s'&z'). Above T„Pz(s) becomes a
Gaussian for L» $, and hence Uz, Vz, . . . tend to
zero. Below T„Pz(s) tends towards two Gaus-
sians centered at +M, the spontaneous magnetiza-
tion, and hence Uz, Vz, . .. approach nonzero (but
trivial) values (Uz- z, etc.). Right at T„Uz,
I/'L, , ... approach nontrivial "fixed-point values"
U*, V*, . . . . We interpret U* = I/ *= ~ ~ ~ =0 as the
T = ~ fixed point, U* = ~ as the T =0 fixed point.
Thus, studying the ratios Uz /Uz, Vz /Vz as func-
tions of T, one finds T, where the ratios become
unity: In contrast to standard Monte Carlo analy-
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sis of critical phenomena" the estimate of T, is
independent of the exponent estimates. "

Extracting exponents is understood by phenome-
nological scaling, similar to the finite-size RG.' "
Supposing that P~(s) depends on L, s, and ( in
scaled form, P~(s) =L'P(sL', $/L), where y is an
appropriate exponent, and P(r»x, ) the associate
scaling function, we find (s')~ =L "f,($/L), where
f,(r) is another scaling function and y is related to
the exponents p, v IM ~(l -T/~.), (c-

I 1 —T/
T, ~

"] asy =P/v. Defining a function Ws as —Ws
=in[(s')»/(s')~ 1/lnb, we identify P/v from its
fixed-point value, Ws* =2//v. The short-range
correlations in (s )I. involve an energylike singu-
larity at T„and thus f„(x»1) =f„(~)+f, 'x " "' '
+ ~ ~ ~ . From this expression one can show that
(6U~I/~U~)l ~ =&(' ""'=&' "", invoking the seal-
ing law dv =2 —n.

This approach was applied to ising lattices
with Ã" sites and periodic boundary conditions,
for N =60 (d =2), N =24 (d =3), and iV =12 (d =4).
We hence used L =2, 3,4, 5, 6, 10, 12, 15,20 (d =2);
I. =2, 3,4, 6, 8, 12 (d =3); L =2, 3, 4, 6 (d =4). Clear-
ly, for such small I one expects that (i) P~(s)
does not yet resemble a continuous function, and

(ii) corrections to the scaling form of P~(s) are
very important. However, P~(s) did behave like
a continuous function down to L =2 (Fig. 1). Since
from one Monte Carlo run we obtain Pl (s) for
al/ I- simultaneously, and each single Monte Carlo
step (MCS) contributes to all PI, (s), we achieve
reasonable accuracy with moderate effort (- 10'

MCS per site). Rather than studying PI, (s) where
the block is the subsystem of an infinite system,
one can also study the distribution functions
PI.~~)(s) and P~~~) (s) of finite systems of size L"
with periodic (p) or free (f) boundary conditions.
While these functions are interesting for under-
standing metastability, "one needs separate runs
for each I-. As corrections to scaling are more
important, "we concentrate on subsystem blocks
here.

Figure 2 shows the "flow diagram" for Ul. . The
behavior at d =2, 3 is found as anticipated above.
The (universals') numbers U* —=0.52 (d =2) and
U* —=0.21 (d =3) compare reasonably to a calcula-
tion" using Wilson's approximate recursion rela-
tions" which yields U* =0.58 (d = 2), U* =—0.22

(d =3). The results for d =4 suggest U* =0, i.e. ,

a Gaussian fixed point t The well-defined meaning
of Gaussian fixed points in this MCRG is a partic-
ular advantage.

The inset of Fig. 1 shows the procedure outlined
above for estimating T, and P/v: U~./Ul varies
smoothly with T, and estimating T, presents no
difficulty. We get k&T,/J=4. 550 (J is the nearest-
neighbor exchange), while the value due to high-
temperature series (HTS) is" k sT,/J—=4.510. '

This 1% discrepancy shows that corrections to
scaling (important for our small L) affect this
(and the exponent) estimate. Assuming correc
tions of the form

(s')I ~r, =L ' '"f„(~)(1+f;L"&+~ ~ ~ ),

d=3
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FIG. l. Block distribution function E'z (s) plotted vs s for various I. , for the d = 3 Ising model at a temperature
4.66% below T~. The inset shows Wa (open circles) and UJ. I Ul. for L' = 6, L = 4; the arrow indicates the estimate
for 2;P/v.
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FIG. 3. Critical temperature estimates (d = 3) from
free blocks plotted vs gnb) ' for various L gower part);
estimates for 2P/v for subsystem blocks (middle part);
finite-size-corrected exponents, cf. text (upper part).
HG (Ref. 15) and HTS estimates (Ref. 23) are indicated
by arrows.
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FIG. 2. Cumulant Uz plotted vs I- ' for various tem-
peratures and d = 2 (upper part) as well as d = 4 gower
part. Arrows indicate the fixed points mentioned in
the text.

the function ~'8 at T, becomes

Ws*=2P/v-f;L "'(1 —5 *')/lnb+ ~ ~ ~ .
Hence we extrapolate the results a,s functions of

(in') ', Fig. 3: Evenfor small free blocks,
where some estimates for T, are far off, the data
converge to a unique limit {the T, of the HTS),
irrespective of I-. Free blocks do not yield accu--
rate exponent estimates, "but subsystem blocks
yield better results: We find 2&/v =1.03+ 0.01,
in very good agreement with field-theoretic re-
normalization. " Our Hamiltonian is a discrete
Ising system, and not a continuum model as in
Ref. 15: This is further evidence that the dis-
crepancy with the HTS result2' 2p/v = 0.98 is due

to too short series'4; it should not be taken as
evidence that discrete Ising systems and continu-
um field theory belong to diff erent universality
classes.

Fitting 8'8* to the above form, one finds the
upper part of Fig. 3. Although there is no longer
a systematic dependence on either I- or b, the fit
parameters f;= 0.35 and x, = 1.8 are not very
meaningful —presumably several correction
terms occur, whose net effect cancels to some
extent.

Our d =2 results are similar, though less ac-
curate as S'~ is a very steep function of 'I' near
T, (we obtain 2P/v = 0.24~ 0.02). Also the results
for 1/v are somewhat less encouraging, 1/v =1.60
~0.05 (d =3) and 1/v =0.9+0.1 {d =2) 5 However,
if we use" Monte Carlo data of the same runs in
a standard Monte Carlo analysis (fitting straight
lines to log-log plots of magnetization, etc.), the
results are inconclusive, errors being 15/o or
larger.

In conclusion, we have demonstrated a new
method of analyzing Monte Carlo calculations
near critical points, using renormalization- group
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ideas. Neither a Priori knowledge of T, nor the
use of particular block sizes or transformations
is required. It allows for the occurrence of a
Gaussian fixed point (Ising model with d =4), and
yields accurate exponent estimates for 2 =3. A
generalization to continuum spins is straightfor-
ward by treating the block variable as a vector s
and sample P~ (s). Other interesting applications
concern continuum models belonging to the Ising
class, such as structural transitions or Len-
nard- Jones fluids. Finally, PI (s) can also be
used to estimate the susceptibility (from the width
of the peak in Fig. I) and the interface tension
[from P~ (s = 0)].2'
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