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could lead to a Jahn-Teller-like electronic in-
stability which lifts the degeneracy and thereby
lowers the total energy. In view of the bonding
character of this band one expects that the Mo,
octahedron undergoes a triclinic distortion, such
that the shortening of the Mo-Mo intxaclustex
bonds corresponds to a localization of the conduc-
tion electrons in one of the split subbands. Such
a mechanism is consistent with the observed
semiconducting behavior of EuMo, S, at ambient
pressure, 4 and could explain the absence of super-
conductivity in triclinic BaMo,S,. It could per-
haps also explain the onset of superconductivity
in EuMo, S, at high pressure, "because the rhom-
bohedral to triclinic lattice transformation could
be suppressed by the application of hydrostatic
pressure. If this is true one expects that BaMo,S,
also becomes superconducting under pressure.
Its critical temperature could be even higher than
that of EuMo, S, because its Mo, clusters are fur-
ther apart from each other [d M, &,t"'~'= 3.27 A,

thus its conduction bands are narrower. "
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We provide evidence for a universal relationship between metallic binding energies
and lattice parameters. By a simple scaling of a universal relationship, one can obtain
binding energies as a function of atomic separation for bimetallic interfaces and bulk
metals.

PACS numbers: 61.50.Lt

Solid-state energetics are fundamentally de-
scribed by the relation between the total energy
and an appropriate atomic separation. Equations
of state, reaction kinetics, and relative atomic
configurations are examples of quantities which

depend sensitively on the energy as a function of
separation. Such energy-distance relations can-
not be obtained for solids with use of modern ex-
perimental techniques. They can, however, be
determined by ab initio calculations. However,
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such calculations are difficult and quite rare. ' '
In this Letter we suggest that there is a simple

universal form for the relation between binding
energy and atomic separation. ' This universal
form permits the simple analytic prediction of
the binding-energy-distance relationship relative
to equilibrium. The only necessary inputs are
the equilibrium binding energy and the equilibrium
interstitial electron density.

Two of us' have recently computed the electron-
ic structure and adhesive energetics for contacts
between all combinations of Al(111), Zn(0001),
Mg(0001), and Na(110). The Kohn-Sham equations
were solved self-consistently with use of methods
similar to those discussed in Ref. 1. Computed
binding energies agreed well with experimental
surface energies and very good agreement was
obtained between computed elastic constants and
experiment. In Fig. 1 are plotted the adhesive
binding energies as a function of separation in bi-
metallic contacts made between all combinations
of the four metals. The adhesive energy is de-
fined as

E &(a) = [E (a) -E (~)]/2A,

where E is the total energy, A is the cross-sec-
tional area, and a is the distance between the sur-
faces of the metals (a =0 when surface atoms of
the two half-spaces are separated by the average
of the two bulk lattice spacings).

It is clear that there is considerable variation
in shape and depth of these curves. It will now

be shown that these curves, as well as those of
the identical metal contacts' [Al(111)-Al(111),
etc.], can be simply scaled into a universal curve.
This scaling is motivated by the expectation that
metals having shorter screening lengths would
have adhe'sive energy curves which rise faster
with separation. That is, the metals would screen
the disturbances caused by creating the surface
over a shorter distance. This suggests that for
identical metal contacts the separation is scaled
by the Thomas-Fermi screening length Z = (9z/
4)"'r,' '/3 a.u. , where the bulk electron density
is n+ = 3/4mr, '. When we encounter bimetallic
contacts as represented in Fig. 1, a length scal-
ing appropriate to both metals must be consid-
ered. In that case, we chose to scale by an arith-
metic average, (x, +Z, )/2. The energy amplitude
was scaled by its equilibrium value, ~=Ez(a—)
where a is the equilibrium separation. Explicit-
ly we have

E~(a) =mE~*(a*).
Here E, d(a*) is the universal adhesive energy
function and a* = 2(a —a )/g, +X,).

Figure 2 shows the results of scaling the calcu-
lated adhesive energies. An analytic fit is given
by E&*= —(1+Pa*)exp(-Pa*) with p =0.90. The
universality of the scaled adhesive energy curve
is truly remarkable. One can see that the results
for all ten bimetallic contacts lie very close to
the universal curve. This is true even though the
bulk metallic densities in the various metals vary
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by a factor of 8.
It is important to understand how the fortunate

result of a universal energy curve comes about.
In the following, we attempt to provide a plausi-
bility argument within the jellium model. First,
we have found that solid-vacuum density distribu-
tions, n(x), scale rather accurately with X. That
is, there is, to a good approximation, a univer-
sal number density distribution n*(x —a/2) where

n(x —a/2) =n+n*[x '(x —a/2)]. (3)

Here a/2 is the coordinate of the jellium surface.
There is a similar scaling for the Kohn-Sham
effective one-electron potential:

We were motivated to look for this scaling by the
fact that the Thomas-Fermi equation scales"
exactly with x in units of &. Secondly, we have
found' that the total number density in the bime-
tallic interface is given to a fair accuracy by a
simple overlap of the corresponding solid-vacu-
um distributions. This, and the stationary prop-
erty of E[n], indicate that it would be a good ap-
proximation to use overlapping solid-vacuum
number density and potential distributions.

Thus, in a first-order perturbation approxima-
tion, we have for identical metal contacts,

E &(a)=—(1/A) J "n(x —a/2)v«f(x +a/2) dx. (5)

V ff(x 0/2) =Vs v ff [X '(x —a/2)]. (4)
Combining Eqs. (3)-(5), we have

E &(a)=—(1/4) (n+vs) f n*(x —a*/2)v, &f*(x +a*/2) dx. (6)

The integrand in Eq. (6) is independent of r, . The
constants in front of the integral are independent
of a, and thus Eq. (6) scales exactly as we scaled
the adhesive energy curve to give Fig. 2. Al-
though our plausibility argument is restricted to
jellium interfaces, we note that the calculated ad-
hesive energies include the ion-ion term exactly
for a rigid-lattice model and the electron-ion
term in first-order perturbation theory.

It seems that the universal nature of the bind-
ing-energy-distance relation is not limited to

metal interfaces or to simple metals. ' Recently,
theoretical binding energy curves have become
available for several bulk metals [Carlsson,
Gelatt, and Ehrenreich' (Mo, K, and Cu) and
Herbst (Sm+', Sm", and Ba)]. These total co-
hesive energy curves were calculated as a func-
tion of the separation between atoms for a uni-
formly dilated lattice. We characterize the den-
sity of the lattice in terms of the Wigner-Seitz
radius, r~= (3/4pn„)"', where ~„ is the atom
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density. As shown in Fig. 3, these quite dispa-
rate cohesive energy curves can be approximate-
ly scaled into a universal function, E,*, which is
also defined in Eq. (2) if we replace E z by E,
everywhere. bX is the cohesive energy at the
equilibrium spacing r ws and a* = (r~ —r ~ )/X,
where ~ is again the Thomas-Fermi screening
length. The value of r, used to determine x was
determined by the equilibrium interstitial elec-
tron density. ~' The binding energies of Mo, K,
Ba, Sm"[4f'(5d, 6s)'], and Sm+'[4f'(5d, 6s)'] fall
closely on a single curve with P = 1.16 where we
have used the same analytic form as for the ad-
hesive energies. The value of P differs from that
appropriate for adhesive energies, presumably in
part because all atoms change their positions in
the bulk cohesive energy calculations while the
adhesive energy curves assume that atomic planes
are moved rigidly. The result for Cu has the
same shape, but a somewhat different p than the
other metals. We do not understand this varia-
tion.

The cohesive energy calculations of Carlsson,
Gelatt, and Ehrenreich' (augmented-spherical-
wave functional theory) and Herbst' (relativistic
Hartree-Fock) are quite different from each oth-
er and from the perturbative density-functional
results of Refs. I and 2 for E~. The nature of
cohesive bonding in these metals is quite varied.
Ba is a divalent band-overlap metal; Sm is an f-
electron metal; Mo and Cu have important d-band
interactions; while K is a simple metal. That re-
sults for such different metals calculated in quite
different ways fall on a single curve indicates the
generality of the scaling relations. We note that
the "tail" region of the screening charge distribu-
tion around metal ion cores can be represented
by electron gas parameters. It is known that the
screening charge density and potential in this re-
gion scale as y, ' ' to a fair approximation. " Then
the argument of Eqs. (3)-(5) applies to the long-
range interaction of screened bulk ions with + a/2
referring to the relative lattice positions and x
replaced by r.

The use of the electron density at y ~ is remi-
niscent of the approach of Miedema and Boom,"
whose work complements our own. They calcu-
late equilibrium energies (e.g. , heats of forma-
tion). We, on the other hand, use similar equi-
librium quantities to determine the form of the
binding-energy-distance relation';

The plotted energies of Fig. 3 were computed
for the same electronic configuration at all atom-
ic separations as were the interface calculations.

The adhesive energy scaling was illustrated for
simple metals. However, the appearance of an
analogous scaling relation for the bulk energy of
transition metals indicates that the adhesive en-
ergy scaling may well extend beyond simple met-
als. As more accurate adhesive and bulk binding
energy results become available, we expect to
find systematic deviations from the proposed uni-
versal curves for different crystal directions and
for different classes of metals. Figure 3 sug-
gests that these deviations might be included by
establishing different values of P.

Many analytic physical relationships are im-
plied by the form of the scaling. In a forthcom-
ing publication we will discuss a universal, vol-
ume-dependent pair potential for metals and show
how cohesive energies, surface energies, and
brittle fracture parameters can be written simply
in terms of known quantities for metallic ele-
ments and alloys.
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by the National Science Foundation under Grant
No. DMR-78-25012.
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