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Monopole Condensation and the Lattice-Quantum-Chromodynamics Crossover
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We propose the condensation of dynamical monopoles and their strings as the mecha-
nism responsible for the rapid crossover from weak to strong coupling in SU(2) lattice
gauge theory. By adding to the Wilson action a chemical potential for monopole forma-
tion, we are able to study the crossover in an extended phase plane. We find a critical
value for the potential, related to the transition in a dual Ising model, above which
monopoles are absent. Support for this picture is garnered from Monte Carlo simula-
tions.

PACS numbers: 11.10.Np

Recently, there has been considerable interest
in the SU(2) lattice gauge theory crossover from
strong to weak coupling. Both strong-coupling
methods' and Monte Carlo simulations' provide
evidence for a fairly sharp transition at around

P =2.2. It is at this point that the theory changes
its behavior and begins to exhibit the asymptoti-
cally free nature of the continuum limit. It is
therefore important to understand the mechanism
responsible for this crossover. '

We propose that the SU(2) crossover is caused
by the condensation of dynamical Z, monopoles
and their associated strings. We will first dis-
cuss the nature of these topological objects and
show how their density provides a good signal for
this transition. Then, we consider a wider class
of models by introducing a chemical potential for
the monopoles and study the behavior of the the-
ory in the resulting phase plane. In particular,
we find a critical value of the chemical potential,
determined by the d =4 Ising transition, above
which monopoles never condense. Finally, we
relate these models to the phase transition in an
SO(3) model.

Consider the standard four-dimensional SU(2)
lattice gauge theory defined by the Wilson action

Z =rl f dU, exp —,'pp tr(U~), U~ = g U„
p lE~P

where the integration is over SU(2). This theory
contains field configurations such that the product
of the trace of all the plaquettes bounding a given
cube may have either sign. Specifically, define

M[c] = —,'(1 —cr,),

where cr, =sgng~, ~, tr(U~). We will refer to M[c]
=+1 configurations as having a dynamical mono-
pole with its world line passing through the cube
c. Obviously, this monopole has a Z, character;
M[c] is either 0 or 1.

Notice that an isolated monopole has a Dirac
string corresponding to a path of plaquettes with

sgn(trU~) = —1 extending to infinity. Clearly, the
only cube with M[c]x 0 will be the one at which
the string ends; i.e. , at the monopole source.
These strings, of course, are dynamical objects
in their own right. It is also possible to have
closed strings (a co-closed set of "flipped" pla-
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quettes), or vortices, a.s they are also called.
These topological objects have a number of im-

portant features. First, Z, monopoles are pres-
ent in an SO(3) gauge theory. ' They are in fact a
result of ~,(SO(3) =SU(2)/Z, ) being Z, . The dif-
ference between SU(2) and SO(3) is that in SO(3)
the string is invisible, as the action goes like
(trU~)'. In SU(2), however, the action is sensi-
tive to the sign of the trace, and thus there is no

continuum analog of these monopoles.
Conversely, in Z, gauge theory, it is the mono-

poles that do not exist, because every link occurs
twice, in opposite orientations, in the product
around the cube (2). Thus, any Abelian factor
cancels, leaving only closed vortex strings (d = 3)
or closed vortex sheets (d =4). The Abelian mono-
poles occurring in the double Coulomb gas de-
scription' of Z, are not topological in nature;
they are in fact topologically trivial combinations
of two of these monopoles, with zero flux modulo
2.

We can exhibit these objects more precisely by
rewriting, following Mack and Petkova' and Tom-
boulis, ' the Wilson action as follows:

Sp=a 1 C

x exp2P+S~~tr(U~)~, (3)

where

S, = g S , o, = g o
p Q 0c pQ Oc

and the integration is restricted to SO(3) =SU(2)/
Z, . Thus, the SU(2) theory is equivalent to a,n

SO(3) theory coupled via the Z, string variables,
Sp, to the density of flipped cubes, our mono-
poles. We note, in passing, that the 't Hooft loop'
acts by flipping the sign (1+8, o, —1 —S, v, ) on
each of its cubes and so can be considered an ex-
ternal source of monopoles.

The expression (3) can be used to define a more
general class of SU(2) models by introducing a
chemical potential for dynamical monopoles. This
is just an extra term, XS„ in the action. The g
—~ limit corresponds to a modified SU(2) model
introduced by Mack and Petkova (MP). It is im-
portant to note that the weak-coupling expansion
is insensitive to the parameter, as a result of
the fact that monopoles have energy - p and dis-
appear in the naive continuum limit.

To investigate the role of these objects, we ran
Monte Carlo simulations on a 4 lattice. We
sweep through the lattice 100 times for each val-
ue of P and X. Thus, a naive estimate of the sta-
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PIG. 1. Monopole density for unmodified Wilson
theory.

tistical accuracy of our results yields 1/(4'
&100)'~2 -1/0. Of course, near any second-order
transitions, the large fluctuations will degrade
this accuracy.

In Fig. 1, we have displayed the monopole den-
sity for the usual (X =0) theory. We see a dramat-
ic crossover from zero to its limiting value for
strong coupling. From the maximum gradient,
we estimate P„~=2.20+ 0.05, which agrees pre-
cisely with the point at which the average pla-
quette undergoes its most rapid transition. We
are thus led to the idea that the monopoles (and
their ubiquitous strings) are responsible for the
transition.

To further test this idea, we examine the aver-
age plaquette, 1 ——,'(trU~), in the MP model (y =~)
as a function of P. This is presented in Fig. 2,
with the curve for ~ =0 from I autrup and Nauen-
berg' for compa, rison. We see that the monopole-
less version follows the weak-coupling curve well
past P= 2.2, where the standard Wilson theory
curves up to meet strong coupling. There is now,
however, a sharper transition at /=0. 9, which
can be easily understood. It is due to the onset
of the vortices and is a remnant of the phase tran-
sition in the Z, theory. Since the MP model is
just a Z, model with fluctuating coupling given by

p, «= —,'p~trU~~, which varies between 0 and P and
is about p/2 on average at the transition, we can
get a rough estimate of this transition by taking

P„ /2 =/„,, or P„=0.88.'" This is in good
agreement with the data. Furthermore, the vor-
tex string density, V[ p] = —,

' (1 —sgn trU~), under-
goes a rapid drop at the transition. We could fur-
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FIG. 2. Average plaquette for MP model (X) .

ther modify the action by introducing a constraint
requiring V[&]=0 for all plaquettes. Doing this
removes any hint of a transition, lending addition-
al support to the picture.

We now examine the model at intermediate A, .
At P =0, Eq. (3) for the partition function reduces
to

expels, +A'(S, ),
p sp=+ 1

where

expA' = fQdU, g (1+S,g, ).
c

If we ignore A', this theory is exactly dual to the
four-dimensional Ising model with coupling 2K
= —lntan&. This model has a second-order
phase transition at K~ 0.15, or g ~ 0.96. We may
approximate A' to leading order by (cr,)s, where

(o,) = f g d V, sgn( g V,).
gs Oc pE: Oc

This is simply related to the limiting value for
the monopole density at p =0 for the Wilson (X =0)
theory, (M) =-,' ——,'(o,). We compute this term"
using the characte" expansion of the sign function
and find (g) = 0.023. This implies a X,«=1+0.02,
or $„,, =0.94. One may also verify that higher
corrections to the effective action will be small.

In Fig. 3, me show a graph of the monopole den-
sity (M) vs X for p = 0. The data provide direct
evidence for the second-order phase transition
at a. value of g=1. Thus, there is a critical ~,
above which the monopoles are frozen out.

We can also perform a strong-coupling expan-
sion around this Ising system. The result of this

calculation is to lowest order a, renormaliza-
tion of X,: X,(p) = 0.94 —8.3& 10 '(p/2)'. Thus,
the critical line is rather flat, and moves down-

ward, as depicted in Fig. 4.
The picture of the p-X phase plane is then rough-

ly as follows. At ~ =~, there is a rapid transi-
tion due to vortices. This transition remains at
p= 0.9 until g = 1, where the monopoles start mak-
ing themselves felt. The effect of the monopoles
is to push the transition to larger p and also to
weaken the transition, turning it into a nonsingu-
lar crossover at around p =0.4. This then ex-
tends to the g = 0 axis, where the crossover is the
well-known one at p =2.2. Preliminary Monte
Carlo data support the X-p phase boundaries
sketched in Fig. 4. In a future publication, "me

mill understand the detailed physics of this phe-
nomenon by relating our combined monopole-vor-
tex dynamics to the familiar" Z, -Higgs theory.

As mentioned previously, these monopoles are
also present in an SO(3) theory. Recently, there
has been evidence of a strong phase transition in
SO(3),'"which is also believed to be related to
monopole condensation. We may interpolate be-
tween SU(2) and SO(3) by introducing the Z, break-
ing by the replacement

(1+cr,S,)- g exp'(S, , —1),

reducing the energy of the string. As g- 0, the
theory becomes the Villain form of SO(3) consid-
ered by Halliday and Schwimmer. ' Thus, the
monopole condensate is directly connected to the
one discussed in Ref. 5. The p-X-q space is de-
picted in Fig. 4, with a reasonable guess for the
behavior of the phase boundary (solid lines). In
the g =0 plane, the crossover should change from
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FIG. 4. Monopole (I) and vortex (II) regions in the
phase space.

a real (probably first-order) transition to a soft-
er, presumably singularity-free, one as the vor-
tex strings gain mass with g -~.

It is crucial to realize that we are not saying
that the modified models are nonconfining. Mack
and Petkova" and Yaffe" have advanced argu-
ments claiming that it is the flux spreading on all
distance scales that is relevant for confinement
(which is a statement about the behavior of asymp-
totically large Wilson loops) and that therefore
our local changes to the action will not destroy
the area-law behavior of the theory. In fact, our
results suggest that the weak-coupling regime is
insensitive to the presence of nonzero ~. This
would imply that the Wilson-loop area law, shown

by Creutz to persist into weak coupling, is equal-
ly valid for our models.

Thus, strictly speaking, our results do not
touch at all on the problem of confinement, and
imply that the crossover at p=2. 2 is a lattice
artifact. However, since analogs of our mono-
poles and vortices exist on larger scales ("fat"
vortices, etc. ), one might hope that a deeper un-
derstanding of their dynamics would shed light on
the behavior of the theory at these larger scales.
Such questions are currently under investigation. "
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