ERRATA

SERIES STUDY OF A SPIN-GLASS MODEL IN CONTINUOUS DIMENSIONALITY. R. Fisch and A. B. Harris [Phys. Rev. Lett. 38, 785 (1977)].

The high-temperature series expansion for the Ising spin-glass susceptibility was recently checked with use of MACSYMA, and several errors were found in the evaluation of the tenth-order term. (The errors were in a part of the calculation which was originally done by hand.) The corrected series coefficients are given in Table I, below. The relative correction in the tenth-order term is only about 0.1% for d = 4, decreasing rapidly as *d* increases. Therefore the Padé analysis (Table II of the paper) is unaffected to the accuracy displayed.

There is a misprint on line 4 of page 787. The correct expression for w_c is $w_c = \tanh^2(J/kT_F)$.

R. F. wishes to thank the Massachusetts Institute of Technology Mathlab group for the use of the MACSYMA Consortium computer.

TABLE I.	Expansion	coefficients	defined	by	$\chi_Q =$	$1 + \sum$	$a_{nm}d^nw^m$.	
----------	-----------	--------------	---------	----	------------	------------	------------------	--

						<i>n,m≥</i> 1					
n	<i>m</i> = 1	<i>m</i> = 2	<i>m</i> = 3	m = 4	<i>m</i> = 5	<i>m</i> = 6	m= 7	<i>m</i> = 8	<i>m</i> = 9	<i>m</i> = 10	
1	2	- 2	2	26	- 118	- 326	4034	16282	$-209408\frac{2}{3}$	- 1 530 490	
2	0	4	- 8	-16	216	104	- 7576	-16368	$469597rac{1}{3}$	$2\ 508\ 129^1_3$	
3	0	0	8	-24	- 64	496	2936	- 7032	$-319813\frac{1}{3}$	-799994_3^2	
4	0	0	0	16	- 64	-176	1280	5232	44 4 2 6	-265909^{1}_{3}	
5	0	0	0	0	32	- 160	- 416	3424	9440	$55242rac{2}{3}$	
6	0	0	0	0	0	64	- 384	- 896	9088	16384	
7	0	0	0	0	0	0	128	- 896	-1792	23 552	
8	0	0	0	0	0	0	0	256	- 2048	- 3328	
9	0	0	0	0	0	0	0	· 0	512	- 4608	
10	0	0	0	0	0	0	0	0	0	1024	

EXTENDED HYPERCOLOR AND THE CABIBBO ANGLE. Aharon Davidson, Philip D. Mannheim, and Kameshwar C. Wali [Phys. Rev. Lett. <u>47</u>, 149 (1981)].

The following final paragraphs were omitted: Other features of our model, such as how it keeps rare decay processes within experimental bounds, and how it maintains the relation M_w = $M_z \cos\theta$, will be described elsewhere.

This work has been supported in part by the U. S. Department of Energy under Contracts No. DE-AC02-79ER10336.A and No. DE-AC02-76ER03533.