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Detailed far-infrared measurements at temperatures from 25 to 300 K provide strong
support for a charge-density-wave mechanism for the dc conductivity and microwave
dielectric constant of tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ). At low
temperatures the charge-density wave is pinned at 40 cm while at higher temperatures
it appears at zero frequency. Values are obtained for the effective mass (20m*) and
lifetime (1.6 && 10 '2 sec at 60 K) of the charge-density wave.

PACS numbers: 78.30.Jw, 71.30.th, 72.15.Nj

Despite considerable experimental and theoreti-
cal efforts over the past eight years, the proper-
ties of tetrathiafulvalene tetracyanoquinodimeth-
ane (TT F-TCNQ) remain controversial. The
principal point of dispute is between single-parti-
cle models and models incorporating collective
effects. The single-particle models explain the
temperature dependence of the conductivity by
scattering of the conduction electrons from pho-
nons" or other electrons. ' The collective pic-
ture assumes that the important 2kF phonons are
in equilibrium with the electrons rather than with
the lattice. This assumption, an extreme case of
phonon drag, leads to a sliding charge-density-
wave (CDW) picture for the conductivity.

The importance of collective effects is support-
ed by diffuse x-ray' and neutron' scattering meas-
urements [which observe a three-dimensionally
(3D) ordered CDW below 38 K and one-dimension-
al (1D) fluctuations up to 150 K] and by conductiv-
ity measurements at high pressure" (which show
a drop in conductivity when the CDW becomes
commensurate to the lattice). The CDW mecha-
nism is, however, certainly not universally ac-
cepted at the present time. In this Letter we re-
port the results of far-infrared reflection meas-
urements on TTF-TCNQ at temperatures between
25 and 300 K. Our data indicate that near 60 K the
dc conductivity of this material is dominated by a
low-frequency mode which we interpret as a slid-
ing charge-density wave. At temperatures below
38 K the CDW becomes pinned at relatively high
frequencies (-40 cm ') where it is the major con-
tributor to the microwave dielectric constant.

Far infrared (FIR) measurements at low tem-
peratures are central to the single-particle ver-

sus collective-mode issue since the latter model
makes rather definite predictions about the far-
infrared properties. " At low temperatures, the
CDW is pinned by 3D interactions or impurities
and is observed as an FIR absorption peak. ' At
higher temperatures, the CDW slides through the
crystal, contributing a Drude-like term to the
frequenpy-dependent conductivity,

v, (&u) =cr„p+0, '~./4~(1 + (u'r, '),
where 0„& is the single-particle contribution to
the conductivity, ~, is the collective-mode life-
time, and &~ = (one'/M*)' ' with n the carrier
density (0.59 per molecule for TTF-TCNQ) and
M* the CDW effective mass. Because the life-
time of the collective mode is very long, its con-
tribution to the conductivity is only significant at
very low frequencies, ~ (1/7, .

Polarized FIB reflectance measurements were
made over 7 to 700 cm ' using a Michelson in-
terferometer in conjunction with a germanium
bolometer detector operating at 1 K. The exit
aperture of the interferometer was imaged onto
the sample by a large (30-cm-diam and 18-cm-
focal length) mirror and the reflected light was
focused by an identical mirror into the entrance
of the light pipe leading to the detector. The
polarizer was a gold wire grid on polyethelene.

The sample was a mosaic of nine TTF-TCNQ
crystals, each -1.2 by 0.15 cm in size, mounted
in an Air Products Helitran cryostat. One crys-
tal had four electrical connections to its back
surface to enable resistance measurements; the
sample temperature was determined by this resis-
tance. This calibration was necessary because
room-temperature radiation heated the sample
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and prevented cooling below 25 K. The mosaic
intercepted more than 90% of the far-infrared
beam and gave a signal-to-noise ratio in the re-
flectance exceeding 100. The reflectance at a
given temperature, R(T), was determined from
four measurements: R (T) = [S,(T)/S, (300)][S,(300)/
S,(Au)]. Here S,(T) is the signal from the mosaic
at temperature I'; S,(300) is the signal at room
temperature; S,(300) is the room-temperature
signal from a mosaic; and S,(Au) is the signal
from the same mosaic after coating with gold.

Figure 1 shows the b-axis polarized reflectance,
R(~), of TTF-TCNQ at five temperatures between
25 and 300 K. At room temperature, "R (~)- 1
at ~ -0. The slope of R(&u) is negative at low fre-
quencies, as expected for a good conductor. At
higher frequencies R(~) -0.75. At 160 and 60 K,
R(~) is qualitatively similar; its magnitude in-
creases as the temperature is lowered while the
negative slope at low frequencies [with R (&u) —1
at ~ —0] remains. At 25 K the reflectance is pro-
foundly different: It has positive slope at low fre-
quencies and a maximum around 40-80 cm ' fol-
lowed by deep minimum at 120 cm '. The 34-K
reflectance is intermediate between the 25-K and

the 60-K data.
We have performed a Kramers-Kronig analysis

of the reflectance data. " At frequencies about
700 cm ' the reflectance was extrapolated smooth-
ly from the measured data, with a transition" at
1600 cm ' to values calculated from the near-in-
frared reflectance data of Bright, Garito, and
Heeger. " The reflectance at low frequencies was
smoothly extrapolated using the Hagen-Heubens
relation in the conducting regime and was as-
sumed constant at lower temperatures. "

Figure 2 shows the b-axis frequency-dependent
conductivity of TTF-TCNQ. The low-frequency
conductivity is in complete agreement with the dc
conductivity of these "ordinary" crystals. " It
rises from 500 ' cm ' at room temperature to
5000 0 ' cm ' at 60 K and then falls to around
200 0 ' cm ' at 34 K and is small at 25 K. We
stress that the low-frequency conductivity is not
affected in any significant way by the choice of
extrapolation procedure. Assuming constant re-
flectance below our lowest data point reduced the
value of the 60-K conductivity at that point by 20'%%uo

or so; the narrow structure at low frequency,
however, still remained. At 25 K the conductivity
has a strong peak at 40 cm '. This feature is re-
duced in strength and broadened in the 34-K data
and is not present at 60 K and above. There is
other structure at higher frequencies, most nota-
bly an intense peak at 290 cm '.
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FIG. 1. Heflectance of TTF- TCNQ for electric field
along the b-axis. Note the suppressed zero. Lines are
drawn as a guide to the eye.

FIG. 2. Frequency-dependent b-axis conductivity of
TTF-TCNQ at four temperatures: 25, 34, 60, and
160 K.
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Fj:G. 3. Heal part of the b-axis dielectric function of
TTF-TCNQ.

Figure 3 shows the real part of the 5-axis di-
electric function of TTF-TCNQ. The low-fre-
quency FIR data are in excellent numerical agree-
ment with microwave dielectric constant meas-
urements. We find e, (0) =3200 at 25 K, within
10%%uo of the values of Gunning et al."at these tem-
peratures. At 34 K, the dielectric constant has
increased to 6000 while it is negative and very
large in magnitude in the highly conducting state.

The 40-cm ' feature in the 25-K conductivity
has a large oscillator strength. We identify this
feature as the phase mode of the pinned CDW in
TTF-TCNQ. The effective mass M* of the pinned
charge-density wave can be estimated from the
oscillator-strength sum rule,

0
(x, (cu)der = TIT(ne'/M*) = gQq'. (2)

The upper limit of the integral is taken as 80 cm ',
where the high-frequency wing of the peak has
dropped into the baseline. We obtain M*=60m,
=20m * (In, is the free-electron mass and m * is
the ordinary band mass).

While small, this effective mass is consistent
with microwave dielectric constant data. Accord-
ing to Lee, Rice, and Anderson there are three
contributions to the static dielectric constant in a

CDW system,

E~ =6~+y(d~ /(2A) +QII /(dr (3)

where & is the high-frequency dielectric con-
stant, ~~ is the conduction-electron plasma fre-
quency, 2~ is the Peierls electronic energy gap,
and ~~ is the CDW pinning frequency. Using the
above estimate of the CDW effective mass, we ob-
tain O~ =2000 cm '; our conductivity data indicate
that ~~ =40 cm '. The CDW contribution to the
dielectric constant is then 2700. At frequencies
well above the pinning frequency only the first two
terms on the right-hand side of Eq. (3) contrib-
ute to Ey At 25 K e, -600 for 100 cm '

& &
& 200 cm ', a reasonable value for the single-
particle contribution to &,. The total dielectric
constant is then predicted to be 3300; experimen-
tally" it is between 3000 and 3500.

At 60 K, the CDW is at zero frequency where
its finite dc conductivity drives ~, (tu) negative at
low frequencies. [Note that e, (v) &0 above 100
cm '.] The zero crossing occurs at a screened
CDW plasma frequency &~/+e„where eH is the
value of &,(Id) above the zero. From the data in
Fig. 3 we obtain ~ =1000 cm ' at 60 K and A~
=500 cm ' at 160 K. The CD%' appears to lose
oscillator strength with increasing temperature.

With O~ known, the lifetime of the collective
mode may be estimated. We use Eq. (1) [but put
o„z(0) =0] and take 5000 0 ' cm ' for the 60-K
conductivity. We then obtain 7, =1.6 x 10 sec
(1/7, =4 cm ') in agreement with the width of the
narrow low-frequency peak in o, (Id) at 60 K in
Fig. 2. In contrast the single-particle lifetime'~
is ~,P-6&&10 " sec.

The 25-K results for the CDW mass and pinning
frequency are significantly different from those
of earlier low-temperature FIR studies of TTF-
TCNQ single crystals by Coleman et al." and by
Eldridge and Bates." (We note that the data in
Fig. 2 resemble early results on sublimed thin
films of TTF-TCNQ, although the magnitude of
the conductivity was much lower and the frequency
of the structure identified as the pinned mode was
higher. ") The polarized reflectance data of Cole-
man et al."did not extend above 100 cm ' and so
did not include the 125-cm ' reflectance minimum
seen in our 25-K data. The magnitude of the re-
flectance was also lower than ours (from depolar-
ization in the light pipes that they used). In their
fit to a model CDW dielectric function they as-
sumed the reflectance minimum to be below
rather than above their frequency range and there-
fore obtained a low value for the pinning frequen-
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cy and, consequently, too large a CDW effective
mass.

Eldridge and Bates" used a TTF-TCNQ crystal
as a far-infrared detector. If ad «1 (a is the
absorption coefficient; d the thickness) their sig-
nal would be proportional to n; otherwise it would
saturate to 1-R (R is the reflectance). Our Kra
mers-Kronig analysis indicates that n & 10' cm '
at 25 K for frequencies above 30 cm ' so that
their samples, withd &3&10 cm, were in the
limit nd» 1; hence the signal was saturated at
1-R. Their data closely resemble our results for
1-R at frequencies below 300 cm '.

In summary, our data support the picture of
TTF-TCNQ that attributes its unusual dc conduc-
tivity and microwave dielectric constant to collec-
tive effects associated with the charge-density
wave. TTF-TCNQ is neither a metal above 58 K
nor an ordinary semiconductor below 38 K.

The high-quality crystals used in this study
were grown by I. Johannsen and L. Groth-Ander-
sen. The work was supported by the Danish Na-
tural Sciences Research Council and the NATO
Research Grants Program.
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