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the presence of the attractive potential. When
many of these wavelengths are contained in the
interproton distance R, we may expect that the
electron wave function around each proton is not
much influenced by the other proton and close to
the nuclei it may be approximated by the atomic
orbitals centered on them. The correlation term
in (10) is then equal to 1, and (10) satisfies the
obvious condition that the cross section for a
projectile composed of two uncorrelated protons
is twice that for a single proton.

When the internuclear distance R is not large
compared with the wavelength, ¢% (R/2, R) pre-
sents molecular characteristics and differs from
fc(Z/k;). The local wavelength close to the pro-
tons is of order 7/Z, and so for R < 7/Z the elec-
tron sees a unified charge of value 2Z and <P»< (R/
2,R) =f(2Z/k,). Then the correlation factor,
close to the peak of the electron distribution,
which means «, < Z, is

| 9%, (R/2,R)/fc(Z/x) |2 =

when R« 1/Z.

We conclude that the ratio between the electron
distributions carried by 2H"* and H* is bound be-
tween the values 1 and 2; furthermore, the larg-
er the interproton distance R, the smaller the
enhancement of the distribution around 2H"* com-
pared with that of H*, These two features are
verified by our measurements.

If we analyze the correlation factor for a fixed
R we see that for increasing «, the electronic

wavelength decreases and we reach, away from
the peak, the region where the electron behaves
as in an atomic state around each proton; the
correlation factor there is equal to 1. This
region is reached for smaller «; when R is in-
creased, and again the experimental results of
Fig. 1 verify this feature of the theory.
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The equilibrium shape of a low-pressure spheromak plasma with a small component of
toroidal current carried by finite-gyroradius particles is computed. The stabilizing
influence of this current on the tilting mode is determined by employing an energy prin-
ciple that includes gyroscopic and finite-gyroradius effects.

PACS numbers:

The favorable characteristics of nearly force-
free, spherical magnetic configurations® dubbed
“spheromaks” have led to an enthusiastic vision

52.55.~-s, 52.20.Dq, 52.35.Py

of a fusion reactor? with engineering advantages
superior to that of tokamaks. However, Rosen-
bluth and Bussac® have shown that these configura-
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tions are subject to the “tilting mode” in which
the entire plasma tilts unstably about an axis
through the center. The remedy?® for this mode
appears to lie in modifying the plasma shape to
one which is oblate and, more importantly, in
employing a conducting shell very close to the
plasma. Unfortunately, this last requirement de-
tracts considerably from the reactor scenario,

In this paper we show that the inclusion of a
component of azimuthal current carried by en-
ergetic ions with large gyroradius in the sphero-
mak system leads to (1) an oblateness in the
shape of the plasma so that by adjusting this cur-~
rent one could optimize the shape for magneto-
hydrodynamic stability, and (2) an additional
stabilizing effect due to the gyroscopic motion
and large angular momentum of these particles.
This stabilizing influence can be employed to in-
crease the distance between the plasma and the
conducting shroud to improve the reactor pros-
pects.

The analytic investigation is a perturbation ex-
pansion about the spheromak configuration by in-
cluding a small energetic particle current j,.
Thus

VxB=kB +47j,9, (1)

with j,=¢ [dvv ,f(H +QP,); H, the particle en-
ergy, and P, the canonical angular momentum,
are constants of motion, € is a positive constant, |

FIG. 1. Magnetic configuration of a spheromak; the
cross-hatched region is occupied by the energetic par-
ticle current, /Q=~1.2 (x=7/R). Dashed line shows
perturbed surface R + 67 (9).

g is the particle charge, and the system is con-
sidered to be axisymmetric. The rigid-rotor dis-
tribution function is chosen because it maximizes
the entropy leading to favorable stability proper-
ties. Furthermore, lIb/RBq,Is € «1 is regarded
as an expansion parameter, where I, is the total
particle current. The first-order (in €) perturbed
fields are obtained from (spherical coordinates

7, 6, ¢)

vxBW =kBW 1475, $=kBD - pangQm=221 [ _ap, f: dH f,(H +QP,), (2)

where V=(P, - qy,)%/2mr?sin®, The zero-order fields B) and poloidal flux y, are those for the
spheromak equilibrium.® We choose, for calculational convenience, f=A4 (constant) for 0<H +QP,
<imR2Q? and zero everywhere else. This choice ensures that j, vanishes at » =R, and with B ~B 2

for »r >R,

(3a)

jp==A(41q/3)R*Q% | 8in?6 |[ x*8in?6(1 +2Y) - 1]3/2

where x =7/R, Y=1.54(Q_ /9)j,(kRx)/x, j,(kRx) denotes the spherical Bessel function of order m, and
Q=¢gB */m. In evaluating j, which is a quantity of order €, we have used zero-order poloidal flux ¥,
in f,, The current density is nonvanishing only between 6,(x) and 7 - 6,(x) and between x, and 1, where
x28in%0,=(1+2Y)"! and x,>=(1 +2Y) ™! (see Fig. 1). The constant A can be expressed in terms of the
magnitude of the total particle current

. . =0
1,=Ja% |j,|=A(4ng/3)R°Q* j:o dxxzje'r ° d0sinf | x? sin26(1 +2Y) - 1]3/2,
0

=A(4mq/3)R°Q*M(Q/Q)) . (3b)
The solution of (2) is obtained from
E .
Vz¢+k2¢>={_j dg4nj, for 0<x<1, @

0 forx>1,

with B(Y =kr Xv® +V Xr XxV®, Furthermore, it can be shown for axisymmetric systems that the per-
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turbed poloidal flux

Yy = sing 8d/80. (5)
The perturbed shape 7, =R + 67(6) of the plasma which coincides with the separatrix is obtained from
0=y (ry) +3M0ry) =+ =g OR) +or 09/ b7, +y(R). (6)
Thus, from (5) and the solution of (4) we obtain for the perturbation of the surface (u=cos6)
or(6) =(%B,) . 322 G, (R)P,’' (W, ("
m=1,3,5, « .

where B_ is the solenoidal field at infinity,

Gu(R)= ~(471,/M)(m +3) [ dx 5%, (RR%)C ,(x) /kRjp-(ER) ,
and ’

Cox) = J_, duP,(1) [°d0 sin6|[x?sin’6(1 +2Y) - 1]¥/2,

P, are the Legendre polynomials, and the prime on P, denotes a derivative. Note that &r is indepen-
dent of the sign of k. The m =1 term is positive and independent of 6 showing a uniform expansion; the
m =3 term is proportional to —(15 cos26 - 3) and leads to an oblateness of the spheromak. The terms
alternate in sign but get smaller and smaller.

To establish the stability of this configuration we employ the energy principle of Sudan and Rosen-
bluth* in the form given by Finn and Sudan® and Finn,®

—w?T+wL +0W,+0W, +0W,=0, (8)
where

L=1%iqg[drn,B-E*xE, T= fd%’n,,m,lzlz,

oW, =472 [a*r d*v(of,/ o) p? | § - EXBI?,

oW, =i g*(w —19) [dr d°v (3f o/ H) g dg*/dt ,

oW, =4 Jdr (1Q|2/am = T T, xQ+E F,xBV - Er4yp v - E[9),
g= f_ ; dt’E-VX—B is an integral over the orbits of the energetic particles, w is the eigenfrequency, E

is the plasma displacement Q =VXx Ex B; in 6W,, J,, n,, and p refer to the plasma current, density,
and pressure, respectively, and in a cylindrical coordinate system (p,¢,z), p =7 siné.

Following an argument employed by Rosenbluth and Bussac,® we let £=£,+€E("), where £, = 6T X%, a
rigid rotation of the configuration about the x axis, is an eigenfunction of the unperturbed spheromak
while E“) depends upon the distortion caused by j,; 6 is the amplitude of the tilt. If a conducting wall
surrounds the plasma at » =R + r,(0), then it has been shown for a force-free spheromak by Rosen-
bluth and Bussac® and under more general conditions by Hammer” that £) does not appear in 6W, to
first order in €. Omitting the details, we obtain

6W,=-iBR*®[(RB)™" ¥ G,(R)+0r,/R]. 9)
M=3455 « o »

We now proceed to compute the remaining terms in (8) involving gyroscopic and finite—Larmor -radius
effects. It is immediately evident that to first order in € these terms can be evaluated with Zo and §0,
instead of £ and B. With £,=6(-iz,z,ip) expli(¢ — wt)] in cylindrical coordinates (p,¢,z), the orbit
integral g is evaluated as follows:

> > t - - - -, R > >
g=f_tm dt' &, -VXB0=(m/q)f_m at' &, -av/dt' =(m /@ &, v +iw J__dt' E, -v].

The iw term is of order w/Q <v,/R «1 and can, therefore, be neglected; v, is the typical Alfvén
speed. Thus, after some lengthy algebra we obtain

R ~ 9
OW, + W, =(9.2471, B, R*6°/M) |, dxx*j,(kRx) [, ° a6 |sin6|cos?6lx? sin6(1 +2¥)~1]/2
0
xX[x2sin26(3-Y) -1].  (10)
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FIG. 2. Plot of W= (6W, + 6W,)/9.2471,B-R%? as a
function of Q2 /Q-.

The system is stable® provided
L?/AT + 6W,+ 6W, + W, >0, (11)

Although L2/4T provides a stabilizing influence,
in our calculations here it is a quantity of O(e?)
and will, therefore, be neglected. In Fig. 2, (6W,
+06W,)/9.24n1,B_R*6* is plotted as a function of
Q/Q,. We keep the uniform field B,, spheromak
radius R, and the total particle current /, con-
stant. We note that x,~1 as Q/Q, ~ 3, i.e., if

the ions have too large an angular velocity they
are unconfined. This follows from the fact that
ions of energy $mRZQ? are barely confined and
their gyrofrequency at 6=7/2 is 3¢B,/m =3Q
Thus, for equilibrium to exist @/Q, <3. For
Q/Q,<0.93, 6W,+0W, becomes negative, i.e.,
the destabilizing influence of the centrifugal force
(6W1) overcomes the stabilizing effect of the
spread in betatron motion (6W,). Note that 6W,
+0W, rises rapidly as /Q,~3. In the distribu-
tion f, the spread in H +QP,, is —imR*Q?, while
the mean value is —imR2Q® It is noteworthy that
only the radial field B, appears in the expression
for 6W, + 6W, while B, determines 6W,. Thus,
the tilting mode is independent of the toroidal
field B ,. If or, is adjusted to make oW, vanish,
then 6W, + 6W, provides a margin of stability.
Alternatively 6r, can be increased to take into
account the stabilizing effect of 6W, +06W, for
0.93<Q/Q, <3. In passing we mention that the
calculation for stabilizing Hill’s vortex (B ,=0)

*°*
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proceeds in a very similar fashion and the ex-
pression for 6W, + 6W, for this case can be ob-
tained from Eq. (10) by replacing j,(2Rx)/x by
3(1=x7).

The practical situation one looks forward to
would probably require the particle current to be
of the order of magnitude of the plasma current,
i.e., a hybrid particle ring—compact torus. Such
equilibria have been obtained numerically® and
their stability would also have to be tested numer-
ically. It must be noted, however, that for 47l
~B_R the rigid tilt may not be the preferred
eigenmode. Numerical simulations of non-field-
reversed ion rings!® show that the ring displace-
ment is mostly in the direction of the external
field while it varies in azimuth as expig.

We are indebted to Dr. A, Turnbull for numer-
ical calculations leading to Fig. 2, and we ac-
knowledge the encouragement of Dr. William C.
Condit and our indebtedness to Dr. J. H. Hammer
for providing us with an advance copy of his anal-
ysis.

!G. Morikawa, Phys. Fluids 12, 164 (1967).

’M. N. Bussac, H. P. Furth, M. Okabayashi, M. N.
Rosenbluth, and A. M. Todd, in Proceedings of the
Seventh International Conference on Plasma Physics
and Controlled Nuclear Fusion Reseavch, Innsbvuck,
Austria, 1978 (International Atomic Energy Agency,
Vienna, Austria, 1979), Vol. 3.

SM. N Rosenbluth and M. N. Bussac, Nucl. Fusion 19,
489 (1979).

‘R. N. Sudan and M. N. Rosenbluth, Phys. Rev. Lett.
36, 972 (1976), and Phys. Fluids 22, 282 (1979).

°J. M. Finn and R. N. Sudan, Phys. Rev. Lett. 41, 695
(1978), and Phys. Fluids 22, 1148 (1979).

63. M. Finn, Phys. Fluids 22, 1770 (1979).

'J. H. Hammer, Bull. Am. Phys. Soc. 25, 862 (1980),
and private communication.

8Stability here refers only to modes growing on a fast
time scale. Because of the neglect of terms higher or-
der in w/Q, the system may still have residual insta-
bilities on a long time scale.

A. Mankofsky, R. N. Sudan, and J. Denavit, in Pro-
ceedings of the Ninth Conference on Numerical Simu~
lation of Plasmas, Evanston, Illinois, 1980 (unpublish-
ed), Paper No. PA-4.

10, Friedman, Ph.D. thesis, Cornell University,
1980 (unpublished).



