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More Nuclear Size Corrections to the Lamb Shift

E. Boric

(Received 19 May 1980)

An evaluation of previously uncalculated finite size effects on the Lamb shift of nor-
mal atoms, with use of methods which are well known from muonic atoms, gives cor-
rections which are larger than the experimental uncertainties (40 ppm for the Lamb
shift in hydrogen). The additional corrections tend to restore agreement between the-
ory and experiment.

PACS numbers: 31.10.+z, 31.90.+s

The precision which has been reached in ex-
perimental tests of QED in atomic systems makes
it necessary to reexamine the theoretical calcu-
lations to ensure that they have been carried
through to a precision comparable to that reached
in the experiments. This requires not only the
calculation of higher-order terms, but also the
examination of approximations made in the calcu-
lation of lower-order terms. For the case of the
Lamb shift in hydrogen and other light elements,
such a reconsideration seems to be particularly
necessary since the most recent experimental re-
sults" are not in good agreement with theory. In
addition, there is an as yet unresolved discrep-
ancy in the calculations" of the higher-order
relativistic and binding corrections amounting to

about 40 ppm. In the present work, I examine
some corrections to the lower-order terms which
are well known in muonic atoms but which have
been neglected up to now for normal atoms, and
find an additional contribution of 40 ppm which
tends to remove the potential discrepancy be-
tween theory and experiment. After presenting a
derivation of the new contributions, I shall brief-
ly discuss the present status of the calculations
and compare the results with experiment.

As is well known from work on muonic atoms, ' '
the fact that the nucleus has a finite extension af-
fects the electron's wave function and the opera-
tors which appear in the calculation of radiative
corrections to atomic energy levels. Thus the
correct expression for the self-energy or vertex
correction is given to lowest order in n by

n, m ll m, 2m l dV~-
(

where K(n, l ) is the average excitation energy de-
fined by the Bethe sum and m„ is the reduced
mass. The effect of vacuum polarization is treat-
ed to a first approximation by adding —& to the

~ apprearing in Eq. (1). Nuclear size effects
enter this expression (and hence the theoretical
values for the Lamb shift) in two places: in the
term ( V' V) = (- 4«p) and in the Bethe logarithm.
We consider first the correction to (p).

The modification of (p) due to finite nuclear
size can be calculated without recourse to a mod-
el for normal atoms and for very light muonic at-
oms. By a calculation analogous to that of Ze-
mach' for the size correction to the hyperfine
structure and to that used by Friar' for the case
of size corrections in muonic atoms, I find (keep-
ing only the nonrelativistic contribution) for s
states

(p)„.= i &o„.(o) I'(1 —2~~~&(r)&.)),

where

(r)&»= J rp(i r —ui)p(u) d'ud'r

= J rp&" (r) d'r

As a check, I compared the result of this esti-
mate with those of an exact numerical calculation
of (p) for the case of muonic helium. '0 The agree-
ment is excellent.

This correction will affect almost all (with the
exception of the spin-orbit term) of the leading
contributions to the Lamb shift. Since 2m, n
=3.7795 & 10 ' fm ' and since (r)&» is of the or-
der of 1 fm for the case of hydrogen, one can ex-
pect a correction of about —38 ppm to the theoret-
ical value of the Lamb shift from this source.
The correction will be larger for other systems.

For the case of hydrogen, I assume an expo-
nential form for the charge distribution and ob-
tain (r),» in terms of the nuclear mean square
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radius ( r '):
(r)&»=(35/16&3)(r')' ' = 1.08 &0.03 fm.

The correction to the theoretical value of the
Lamb shift that comes from use of the correct
value of (p) in Eq. (1) gives rise to a shift of
—0.042 &0.002 MHz for the case of hydrogen.
This effect is as large as the theoretical discrep-
ancy in the higher-order corrections'4 and, as
will be shown subsequently, is such as to improve
agreement between theory and experiment. "

The corrections to the Bethe sum due to finite
nuclear size turn out to be of order (nZm)'(r')
and hence are negligible. Following the defini-
tions of Klarsfeld and Maquet" and Klarsfeld"
we have

g„., f„, „...(u'(n ', n) ln
~

&u(n', n) )

n'l' nl n l~

R„,""=f, drr'p„, (r)p„,, (r),
and consider only deviations from the point (p)
values. Thus ~(n, n') =(u&(n, n') —Dv(n) with
b, &u(n) =Z'R „[(mnZ)'/6] (r'),

(6)

nl

= R~+ aR»"' —- R~+ f, dr r 'cp„,(r)ay»(r). (7)

Using the ~otation S„=g„&u~'f~, as in Ref. 12, we
find, after some algebra

where f„, „,. is the oscillator strength for the
transition ~n, l) —~n'l'). It is to be expected
that only the Bethe sum for s states will be affect-
ed, and so it will be sufficient to estimate the
correction to lnK(2, 0) due to finite nuclear size.
We make use of the fact that

f„, „,, = ~ (u(n', n)(R„,"")',
where

b.lnK(2, 0) = —S,L~ (2)/S, +S, 'g [,' ~~'R~b—,R»"' —34~&u~f~] ln( l~q I /K(2, 0)), (s)

where only terms of first order in the deviations from the point values were kept.
Obviously the terms proportional to 4&v in Eq. (8) are proportional to (ma Z)'r' and hence negligible.

Thus

&p„(r)= p„( 0)m o Z(r -r'/2R„- —,R„+ r'/20R„'), r & R«,

= y„(0)( maZR «)'(e ' '/5)f-y '+ 3+ (2-y)[lny —P(2) -~4]j, r~R«,
with y =meZr; contributions of higher order in me&R& are neglected. I use standard expressions"
for the p„~(r) and p-state Coulomb wave functions for the continuum contribution. For small values of
r, the p-state wave functions are proportional to r, and hence the contribution to 4R»"' from the nu-
clear interior is proportional to

fo «dr r'y»(0)maZ(r r'/2R„—- & R„+r'/20R„') - (m aZR«)' (10a)

and is clearly negligible. The contribution from the nuclear exterior is given by

p„(0)[ (m o.ZR«)'/5] f„dr r'y„~(r)e '~'
~
3 —y '+ (2 -y)[lny —g (2) —~~] ) . (10b)

The result is a convergent, but (at least for the continuum contribution) very lengthy expression which
will not be given here, but which is clearly proportional to QaZR«)'-10 '-10 ". The correction to the
Bethe sum is thus negligible in comparison to the correction arising from taking ( p) 4 ~y„(0)('/4m.

Another nuclear size correction which has been neglected up to now in normal atoms is a correction
to the Breit correction for relativistic recoil."" Friar' has given a model-independent expression
for the case of light muonic atoms, which is also valid for the present case:

b, lnK(2, 0) = 3 S, 'Qta~'R~6R»"' 1n(I~~ ~ /K~ (2, 0)) . (sa)
n

It remains to calculate ~2O"'. Friar" has given an expression for the correction to the radial wave func-
tion p„,which can be used for this purpose. For the present estimate it is sufficient to take the nucleus
as a uniformly charged sphere. Using results of Ref. 13, we find

This correction decreases the Lamb shift in hydrogen by 0.0005 MHz.
For completeness, we remind the reader that the known shift of the 2s level due to nuclear size is
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given by

aa = [ —2(a Z)'m'/3n'] ((r') —, a—Zm(r') (,) ) .

Use of the measured" charge radius for hydrogen, (r')' '=0.86 +0.02 fm, results in a correction of
0.144~ 0.007 MHz.

In order to discuss the status of the theory of the Lamb shift, it is necessary to summarize the theo-
retical contributions to the 2s,~, —2p, ~, splitting in hydrogenlike atoms. Following the notation of
Mohr, ' one has

3n 30' " m, ' "ff(2,0) m l9„(0)l'

+ — + 0.32 206— + 2.2962wnZ1 mR ' a m~
8 rn

' ~m
p (Za)~ ——ln2(Za) + 3.9184 ln(Za) '+Gvp(Za) +GsE(Za)

Here S„- is given by Eq. (12) and

+ Ssi Ze +SreC ~ (13)

(14)

The higher-order binding corrections are a major source of uncertainty in the theory of the Lamb shift.
According to Mohr, ' the value of Cvp can be calculated reliably from the Uhling contribution; terms
coming from the Wichmann-Kroll correction' contribute only 0.0003 MHz in the case of hydrogen.

Two estimates of the higher-order binding correction to the self energy, GSE, exist in the literature,
and they are in slight disagreement. Mohr's extrapolation' gives

Gs E (Za) =- 24.1 + 7.5Za ln(Za) 2 +15.3Za + 1.2, Gs E (a) =- 23.4 + 1.2;

while Erickson's expansion' gives

GSE (Za) = —17.2+ 17.2Za + 0.6, GSE (a) = —17.1+0.6.

The contributions to the Lamb shift in hydrogen are, respectively, —0.169+0.009 and —0.124+ 0.009
MHz. The difference of 0.045 MHz is about the same size as the finite-size contributions presented
here and somewhat larger than either the experimental or theoretical uncertainties. The numerical
prediction for the hydrogen Lamb shift is [with use of constants a =137.03599(3), R„=109737.3143-
(10) cm ', and m, /m~=0. 000 5446]2O summarized in the form (energies in MHz, radii in fm)

Ss= 1057.910+0.007 22GsE(a) +0.1955(r') —0.391(r)&»
= 1058.012+0.007 22GSE(a)

= 1057.843+ 0.015 or 1057.888 + 0.015,

depending on the value of G«used. The most recent experimental values quoted in the literature are

p
1057 862 + 0 020 and 8

p
1057 845 + 0 009.' Theory and experiment are in reasonable agree-

ment if all nuclear size corrections discussed here are included.
Since it is probably worthwhile to investigate the Z dependence of the higher-order corrections by

studying other systems, such as He' and Li as well, I give numerical predictions for these cases
also:

SH, = 14 052.9+0.4623G qE(2a) + 3.132 (r') —1.025(r) &, ~
+ 0.3 = 14 050.6 +0.4623 G s ~(2a)

= 14 040.0 + 0.7 or 14 043.3 + 0.7;

S,„,=14046.2+ 1.2 (Ref. 21) or 14040.2+ 1.8 (Ref. 22) or 14040.2& 2.9 (Ref. 23) .

Sp; = 62 750.3+5.266GSE(3a) +15.85(r2) —6.78(r) (,)
+ 1.2 =62833+5.27G~E(3a)

= 62 714 + 11 or 62 744 + l 1;

S,„z,= 62 765 + 21 (Ref. 24) .
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Here values for the charge radii were taken to be
rH, =1.673+0.001"and rL;=2.57+0.10." The
contribution from the new size effects are -2.2

MHz for helium and -23 MHz for lithium. The
theoretical predictions are in reasonable agree-
ment with experiment, but more work on the
higher-order binding corrections remains to be
done before definite conclusions are drawn.

It has been argued" that the finite nuclear size
corrections to the nonrelativistically reduced self-
energy operator [Eq. (1)] which have been pre-
sented here may be canceled by higher-order and
relativistic effects. Equation (1) was derived
by means of a nonrelativistic reduction of the full
self-energy operator for momenta small com-
pared to the electron mass and it may not be
valid for distances of the order of a nuclear ra-
dius. In this case, it should not be used in a high-
precision calculation. On the other hand, if Eq.
(1), which has been in general use for many years,
is applied consistently, the correction presented
here must be included. A similar correction is
known to be important for muonic atoms. The
absence of such corrections would indicate even
more difficulty associated with use of a simple
formula based on the scattering approximation
than had been expected. Although it might be sur-
prising that nuclear size corrections, which in-
volve relativistic electrons (qR„-1), could be
significant in an essentially nonrelativistic prob-
lem, one must recall that the effect is only of the
order of a part in 10 . However, this is signifi-
cant compared with experimental accuracy and
with other theoretical uncertainties. The only
way to settle the question of the applicability of
this correction is a unified investigation of higher-
order corrections and nuclear size effects which
avoids perturbative expansions in the binding po-
tential, similar to that performed by Johnson
and co-workers, "although the numerical diffi-
culties may turn out to be insuperable. Pending
such a calculation, the additional nuclear size
correction presented here should be regarded as
a possible explanation for the disagreement be-
tween theory and experiment.
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