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The electric dipole moment of the neutron ( p„'} is calculated in the left-right-sym-
metic theory of Mohapatra and Pati and related to CP-nonconservirg parameters of the
neutral kaon system, yielding the bound p„')10 "~ q+ —qoJ e cm. Recent measure-
ments of Ko —2 ~ amplitudes indicate that p„may well be of order 10 e ~ cm which is
several orders of magnitude larger than the prediction of the Kobayashi-Maskawa model
and only a few times smaller than the current experimental limit p,„'(expt} (6& 10 ~ e ~ cm.

PACS numbers: 13.40.Fn, 11.30.Er, 12.20.Hx, 14.20.Cg

The observed asymmetry between left- and gauges. ' The observed magnitude of CP noncon-
right-handed currents in weak interactions has servation has been readily accommodated in such
often been speculated to be a low-energy phenom- a model by linking it to the suppressed right-
enon. ' Models of electroweak interactions have handed currents. ' Unfortunately, the confirma-
been proposed in which the unbroken Lagrangian tion of these ideas may have to await the con-
possesses a left-right symmetry (LRS) based on struction of accelerators many times more pow-
the group SU(2)z, @SU(2)z U(l) and the parity erful than the ones now available unless' one can
nonconservation seen at ordinary energies is im- think of effects that for some reason are sup-
plemented by introducing different scales of sym- pressed if the underlying intera. ctions are purely
metry breaking for the left- and right-handed left-handed, i.e. , V-A. One such effect is the
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electric dipole moment (EDM) of the neutron.
In a pure V -A theory with CP nonconservation

arising from phases of the quark mixing matrix,
e.g. , the Kobayashi-Maskawa model, ' there ex-
ists a phase cancellation in the one-loop calcula-
tion of the EDM of an elementary fermion, lead-
ing to zero contribution. ~ In fact, Shabalin has
shown that in the Kobayashi-Maskawa model the
sum of all two-loop graphs contributing to the
EDM of a quark vanishes as well. ' Consequently,
in the Kobayashi-Maskawa model the EDM of the
neutron (p„') is expected to be s 10 "e ~ cm; that
is, at least five orders of magnitude smaller than
the present experimental limit'.

p „'(expt) & 6 x 10 "e ~ cm.
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FIG. 1. Diagrams which contribute to the electric
dipole moment of an elementary fermion f in the
't Hooft-Feynman gauge. W~ (A = 1,2) are charged vec-
tor bosons; Sk are unphysical scalars.

sine~ „e"L&

cos~g ~ s

where 0~ ~ and 5~ ~ are real parameters. The complex vacuum expectation values also give rise to a
complex gauge field mass matrix. The left- and right-coupling gauge fields, W~ ~, are then related to
their mass eigenstates, Wy 2 by

W, = WL, cosf —Wa sin& e'~, W, = W~ sing e '~+Wa cosg, (3)

where g and X are real angles. It is this L-R mixing through f that avoids the phase cancellation men-
tioned above, allowing a nonvanishing one-loop contribution to the EDM. The phase y in (3) represents
a second source of CP nonconservation independent of the quark sector.

In the 't Hooft-Feynman gauge, the leading contribution to the EDM of an elementary fermion (f,.)
arises from the six Feynman graphs shown in Fig. 1." For generality we write the flavor-changing
part of the interaction as

I. = -Q f,y„(a,,"+b,,'y, )f,'W. " -p f, (c,,'+d.,,"y,)f,S.H. c., .
i jkijk

where gauge invariance constrains the couplings of the unphysical scalars Sk to be

(d)
In contrast, the EDM resulting from one loop
need not vanish in a theory with LRS and might
therefore be expected to be larger by several

f )IN f
K

s
K

orders of magnitude, than in a pure V-A theory. I I /

In recent years significant technological advanc-
es have been made in the storage of ultracold neu-
trons. Several experiments now in progress hope
to reduce the existing limit for p, „' by two to
three orders of magnitude in the next year or
two. ' It therefore appears useful to undertake a
calculation of p, „' in a left-right-symmetric
gauge theory.

For definiteness, we consider the four-quark
left-right-symmetric model" of Mohapatra and

Pati with appropriate modifications. ' CP nonconservation can arise in such a theory through both
complex fermion-scalar coupling and complex scalar vacuum expectation values. After diagonalization
of the fermion mass matrices the charge-current eigenstates (d', s') are related to the mass eigen-
states (d, s) by

d cosog g

s' » —sin81 &e ' I-.&
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Here m;, m,. are the masses of the fermions f;,f, , and M, are the masses of the charged spin-one
fields R'„k = 1,2.

If the external fermion masses can be neglected relative to the internal ones we obtain for the EDM
of f& the result"

', lm (a» b, ,'*),Q,. 2 —~r + 2 x' —3y' —Q, (4 —5r +r' + 3 in' ) (6)

where r =m, '/M~', m, is the mass of the internal fermion line, and Q,. is the electric charge of f; in
units of lel.

For the neutron EDM we retain only the lowest-order terms in r. Expressing the coefficients a, ,
~

and b, ,
' in terms of the parameters of the gauge model we obtain the quark EDM's:

sin2&, —,A (m„„cos8L, cos8~ sir&. + m, , sin8z sin8z sinB).
M2 M~

where 5 = 5~ —5~, and A = 4, B=&+ 5 for the u quark and A = 5, B =~ —6 for the d quark. Adopting the
nonrelativistic bound-state model for the neutron we have"

V. = (4V, —V„)/3.

Thus

e ~g LRR sin2$
727T 1 2

x {(5m„-m„) cos8r, cos8„siIQ. + [5m, sin(X —6) —m, sin(X +6)]sin8z sin8~).

With a proper choice of the scalar potential we may impose a LRS on the Lagrangian such that g~
=g„and OL,

= 0~." If we also assume that M,'«M2' we find

p„'= (3.6x 10 "e ~ cm GeV ') tang((5m„- m, ) cos'8c sin&+[5m, sin(y —6) -m, sing+6)] sin'8c], (10)

= (10 "e ~ cm) tang [4 sira + 1.4 sing —6) —0.1 sing + 5)], (11)

where Hc is the Cabibbo angle and we have used ~„=nz„=300 MeV, ~, = 500 MeV, and yg, = 1.5 GeV.
The magnitude of the EDM is crucially dependent on the left-right mixing angle f whose value is un-

known. This uncertainty is eliminated by utilizing the CP parameters of the neutral kaon system. If
f = 0 the above model is "isoconjugate" and q+ =q»."'4 We thus calculate that

lrj+- -q»l =tarp[sire+sin(&+6)]lyl ~

where y is a parameter determined by strong interactions and is presumably of order 1. Thus

l

[4 sir0. + 1.4 sing —6) —0.1 sin(y+6)]
[sire + sing + 6)] l yl

(12)

(13)

There are two cases in which this expression becomes particularly simple: (i) "manifest" l,RS "
wherein the quark mass matrix is Hermitian and 5 = 0, and (ii) real left-right mixing, wherein the W
mass matrix is real and X =0. We then have (i)

lp„'l = (2.7/lyl)x (10 "e ~ cm)lrl, . -rl»l; 6=o,

and (ii)

ll „'l=(1.5/lyl)x(1o-"e cm)lq, -q»l; y=o.

For a reasonable upper bound for lyl we take lyl & 10, giving the relation"' "
lv.'I»0 "ln, n..l e cm.-

Recent measurements by Christenson et al.""give the result

(14)

(16)

= 0.22+ 0.11,
n+-
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indicating that the neutron EDM may be of order
10 "e ~ cm, although the large uncertainties in
the experimental result (17) do not allow one to
make definitive predictions. We note that this
measurement along with Eq. (12) leads us to place
a useful lower bound on the important left-right
mixing angle f:

This is complementary to the upper bound
~ g~

&0.06 deduced in Ref. 15.
In conc1usion, we find that in the left-right-

symmetric theory of Mohapatra and Pati the EDM
of the neutron may well be of order 10 "e ~ cm.
This is barely an order of magnitude less than
the existing experimental limit (&6&& 10 "e ~ cm)
and is several (&5) orders of magnitude larger
than that expected in the Kobayashi-Maskawa mod-
el. In addition, the I RS theory yields a relative-
ly unambiguous link between the EDM of the neu-
tron and the &P-nonconserving parameters of the
neutral kaon system; in particular we find p„'

10 s2~i7+ -i7,J e cm. Projected experimental
measurements'" of p„' and q's in the foresee-
able future could thus provide decisive tests of
the left-right-symmetric model of electroweak
interactions.
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Data from pN interactions in the Fermilab 15-ft bubble chamber show that the mean
transverse momentum (pz) of forward hadrons in the hadron c.m. system exceeds that of
backward hadrons for 8' &100 GeV . Events with high nz, a measure of forward p~, tend
to have planar hadron systems and show a three-jet structure in their angular energy
Qow; their number exceeds that expected in bvo-jet models. These observations are
consistent with quantum chromodynamic predictions of hard-gluon bremsstrahlung.

PACS numbers: 13.15.+q, 14.80.Kx

Gluon br emsstrahlung can account for the re-
sults of several recent experiments. Groups at
PETRA' observe evidence for three-jet events
whose origin may be e'e -qqg (q denotes quark;
g denotes gluon). The analogous process in weak
(electromagnetic) deep-inelastic scattering is
W'q(y*q) -qg (W' are the intermediate vector
bosons, y* is the exchanged virtual photon),
where the remaining diquark in the target nucleon
is a spectator to the interaction. Evidence that
this process contributes substantially to the total

deep-inelastic cross section at high energy comes
from both neutrino" and muon experiments.
We report here the observation, in a neutrino
exper iment, of three-jet events whose proper ties
are consistent with those expected for hard-gluon
bremsstrahlung (W'q- qg) events.

Neutrinos (v„) from the Fermilab quadrupole-
triplet beam interacted in the 15-ft bubble cham-
ber filled with a 47-at. % Ne-H mixture. Muons
from charged-current interactions were identified
by the two-plane external muon identifier. ' A
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