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Capillary Waves and Surface Tension: An Exactly Solvable Model
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An exactly solvable model of an interface between coexisting phases in a modified
planar lattice gas, or its magnetic equivalent, is described. The results reconcile the
apparent conflict between intrinsic structure and capillary fluctuation theory. There
are anomalously long-ranged correlations in the interface.
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Despite considerable effort, there still remains
a fundamental controversy in attempts to describe
in statistical-mechanical terms the phenomenon
of phase separation and its associated surface
tension. Recently Weeks' has indicated a resolu-
tion in a general phenomenological theory founded
upon reasonable, but not necessarily mutually
compatible, assumptions. This Letter describes
an exact calculation for a planar classical lattice
gas which, by making a single assumption in its
interpretation, supports Weeks's point of view.
This assumption is that a restriction of ensemble
used is irrelevant.

Current theories of phase separation may be
categorized as follows:

(A) CapiLLary manes Consid. —er the surface of
separation in d dimensions as a (d —1)-dimension-
al membrane with side L acted upon by a surface
tension v.. In the regime of linearized fluctua-
tions application of equipartition at temperature
T gives, for the rms displacement u of the mem-
brane,

where v is the surface tension in units of kT. In

computing the result for d = 3 a mode wavelength

cutoff is required, giving a, in (2) an atomic di-
mension. These results are contained in the the-
ory of Buff, Lovett, and Stillinger'; the surface
is assumed to provide an abrupt boundary between
liquid and vapor bulk phases; this is inconsistent.
Equation (1) is not even correct for very low tem-
peratures, where 7 is large, as is shown in (13)
below.

(B) Free energy dens-ity theories. The exis-—
tence of an intrinsic density profile p(z) is as-
sumed from the outset. The equilibrium free en-
ergy I', according to van der Waals' and Cahn
and Hilliard, ' is written as an Euler problem,

F =min J f(p(z ))dz,
'

(3)

such that p (- ~) =p, and p (~) =p„p, and p, being
the liquid and gas densities, respectively. The
origin z = 0 is chosen so that

f" dzzdp/dz =0. (4)

The Ansatz for f (p) (Refs. 3 and 4) was refined by
Fisk and Widom' to render it consistent with scal-
ing; then p(z) varies on a scale determined by
the correlation length $. Were approach A true,
the only solution of (3) and (4) would be trivial:
p = 2(p, +ps). A theory of type B was obtained
from first principles by Triezenberg and Zwan-
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zig, but with the ab initio assumption that p(z) is
nontrivial.

(C) Rigorous calculations. —This discussion
will be restricted to d =2 since the general re-
sults for d = 3 are only valid at low temperatures.
Consider a lattice A = ((i„i,): -N» i, » N, -M
» i, » M] with a spin o((i„i,)) =+ 1 at each point.
Take boundary conditions, which we shall label
B' (0, 2N+1), defined by o((N, i,))=o((—N, i,)) =1
for 0» i, » M, 0((N, i,)) =v((-N, i,)) = —1 for —M
» i, &0, and o((i„M))= —o((i„—M)) = 1 for —N
- i,- N. There is a. configurational energy

(( 3)=Q~b'- ) 4) ( ), (5)

where Z((0, I))=S„S((1,0))=S„Z(l)=Z(- I ), and
Z(l) =0 if ~l~ & 1, and where x and y are points of
A; J,- &0 are ferromagnetic couplings. The prob-
ability of such a. configuration is

p
' (b]) =(Z '

) 'e p(- pZ (o]), (6)

where P = I/kT, T being the absolute tempera-
ture Her. eafter we shall put K =. PZ. The surface
tension is defined by'

r = lim (2N + 1) ' lim ln(Z ~ /Z ~' ), (7)

where ( ~ ~ ~ )A' denotes average with respect to
(6). The results are"

( 2K, + ln tanh K„T- T,
]0, T&T (9)

where 7', is the critical temperature which solves
sinh2K, sinh2K, =1, and

lim E(aN, N)

0, 0 ~6&~
PH + SgnQ. g) 1

I m*( sgnn) +'(
) Jab),

(1o)

with

b = (sinhv/sinh2K, *sinh2K2) '~',

where

4'(x) = (2/Wm) J e "'du. (12)

(m* is the usual Ising spontaneous magnetization. )

The second moment of the profile given by (11)

where ZA" is the partition function with all
boundary spins up. The profile for a finite-width
strip is

S(p, N) = Iim (o((O, p))),',

and (12) is

w' = (N/sinhv}, (13)

where i indexes a slab with neighbors (i+ 6). The
internal degrees of freedom of every slab have
thus been integrated out. An essential assump-
tion of the theory is that the fluctuations in height
within each slab are finite away from the critical
point; were this not so the exercise mould be
quite pointless. We now describe an exact calcu-
lation along the lines of (C) and (D).

Recalling the boundary condition B' (0, 2N+1)
in (C), define B' (y, 2N+1) exactly as before but
with v((-N, i,})=-lfor i2&y and 1 for i, ~y.
Then by sliding p strips B' (y, , 2N +1) together,
such that they share common edges, and such
that p~y„=o, we obtain a single strip B' (0,
2N(2/ +1)) with an interface restricted to pass
through the given points y„, j = b, . . . , p - 1-for
x, =(2j+1)N. There is an additional restriction
best clarified with use of the usual low-tempera-
ture expansions; each vertical line l, = [(2j+1)N,
y] is crossed by one a,nd only one contour seg-
ment; each such segment is connected to (-pN, 0)
and ( pN, 0) via the "long contour" of B ' (0, 2N(2p
+1)+1). Equivalently, no closed contour is al-
lowed to straddle any line l,-. The methods of Ref.
8 lead to

Z(B' (y, 2N+1))/Z(B (2N+1)) =4(y, N), (15)

which has the same length dependence as (1), in
agreement with theory A, but a. different 7. de-
pendence. For reasonable macroscopic values,
the width would be quite unobservable with the
naked eye, but the forms (11), (12), and (13) are
totally at variance with theory B. On the other
hand, (9) accords with Widom's scaling ideas':
2t =1/$, where $ is the correlation length of a
pure phase. "

(D) Widom" proposed that there is an intrinsic
structure with a length scale $, to be treated by
theory B, in the vicinity of a wandering surface
of phase separation. This point of view is refined
by Week's theory. ' Suppose phase separation is
occurring along the z direction. Then the system
is broken up into d-dimensional hyperstrips M)itk

sides of length $. Making reasonable assump-
tions, a phenomenological statistical mechanical
treatment shows that the heights z,. of the Gibbs
dividing surfaces in each column are distributed
as

P((z)) =Z 'expa-8vp (z, -z, „)'],
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where B"(2N+1) implies that all boundary spins are up, with

C(y, N) = 2v f dree" /J cosh[2Ny(u) J+sinh[2Ny(&u)]cos&*(u)],

where

cosh'(&u) = cosh2K, *cosh2K, —sinh2K, *sinh2K, cos~

and

e" ' '=[(e' -A)(Be' -1)/(Ae' -l)(e' -B)]' '

(16)

(18)

with A =exp2K, cothK, and B =exp2K, tanhK, and 6*(0)=0. Equation (16) is exact for all N. The proba-
bility of a configuration of heights z, , j=1, . . . , p is

P

S(~ „.. . , ~, ,)=Z 'QC(z, -z, „N),
~p

with z p y zp 0. The factorization here is a trivial. consequence of the restriction of the low-tempera-
ture expansiori. Provided the strips are not less wide than $ this restriction is unlikely to matter
much. The asymptotics of (16) are as follows: For y «N- (,

C(y, N) (3'sinhv/N)' 'exp -N[~+ (y' sinh~)/2N'], (20)

(21)

which recaptures Weeks's form (14), with the usual flat interface contribution for y=0. For y»N-(,
C(y, N) -exp[-!y! /$] is obtained by deforming towards the branch-cut structure iri (17) and (18). No-
tice that the limit 8, -~ in (16) leads back to the SOS results.

The surface tension should be evaluated by summing directly within the integral representation of the
product of C's, rather than taking (20). This gives a surface tension

T'=lim[2N(2P+ I)) ' In(—
2n j,de [cosh2Ny(&u)+ sinh2Ny(&u) cos5*(cu)] "~'"].

lim G( ep '~', p) = exp(- NO'/2b'), (23)

which leads back to the results (10) and (11)for
the unrestricted ensemble. The conditional prob-
ability that ! z,. !

~ $, given that zo = 0, is given as
P -~ and for Nj large by [recall (12)]

I'(j ) = 4(b/4T (Nj )'~']. (24)

Recalling the definition of $ and (22), (24) obvi-
ously relates to the wandering of the support of
the intrinsic structure in different strips. As j

Provided Nsinhw&(sinh2K, *)', to ensure rather
crudely that there is a unique turning point for
Laplace's method, we get ~'= ~; simply summing
products of terms like (20) gives spurious terms
in the surface tension. The leading term in the
dispersion expansion for the profile within a strip
can be analyzed when (2N+1)y(0) =const If r i. s
the distance from the midheight in the strip, then,
for r»N,

& o((0, r))&

-sgn(p)m*[1 —e '~ "~ ~(N/r) 'r 'J(K)], (22)

where Z(K) is some function. This is to be con-
strasted with (10), (11), and (12). For the char-
acteristic function defined by G(8, P) = (expi Oz, )
we get

! (24) decays as I/v'j; such long-range cor-
relations were first suggested by Wertheim" in
an approximate theory, the assumptions of which
are not consistent with our exact results.

I acknowledge extremely informative discus-
sions with M. E. Fisher, N. E. Frankel, C. E.
Pfister, E. R. Smith, and B. Widom, Especially,
I want to thank B. Widom for a critical reading
of the manuscript. This work was done in a most
hospitable environment while I visited the Ap-
plied Mathematics Department of Melbourne Uni-
versity.

Note added. —The original treatment of Gal-
lavotti, "which provided the first rigorous evi-
dence of interface wandering in planar models,
has been developed" to give a precise definition
at sufficiently lotto temperature of local structure.
Further in their discussion these authors pro-
posed dividing the system into strips having width
roughly g. They suggested that the magnetiza-
tion profile within a strip conditioned by the en-
try and exit point of the phase separation region
should vary on a scale of $. This is precisely
what we show, for all T& T„ in (22) for first
order in dispersion. In another publication (22)
will be fortified with precise error estimates
to see whether it is compatible with a van der
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%Rais-Fisk-Widom prof ile.
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