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Group-Theoretic Approach to Two-Electron Correlations in Atoms
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We suggest that group-theoretic techniques may be useful for studying two-electron
correlations in atoms. We show that matrix elements of the Coulomb interaction for
doubly excited states of the !S configuration can be approximated by a constant plus a
pairing term. The latter gives rise to a highly correlated state similar to a Cooper
pair in the electron gas. It may be identified with the state that leads to the Wannier
threshold law for the escape of two electrons from a Coulomb core.

PACS numbers: 31.15.+q, 02.20.+b, 31.20.Tz, 34.80.Dp

Several phenomena in atomic physics appear
to be dominated by two-electron correlations.
Among others, we mention the properties of the
ground states of negative ions and of doubly ex-
cited states in atoms and ions.! With one major
exception,? the traditional route for calculating
properties of such states has been through the
use of a single-particle basis, within which ma-
trix elements of the residual Coulomb interaction
e?/r,, are calculated. For strongly correlated
states, this route leads to large configuration
mixing calculations. The purpose of this note is
to suggest an alternative approach, based on
group-theoretic techniques, Although the math-
ematical aspects of our approach are different
from that of Ref. 2, which uses hyperspherical
coordinates, the physical motivation of focusing
on the joint motion of the two electrons is similar.
As a result, our work provides a complementary
algebraic description to the geometrical one using
hyperspherical coordinates; our correlated state
shares many properties with that obtained in Ref.
2.

Group-theoretic techniques are not new in atom-
ic physics. Racah® used them to analyze states
of the (nl)¥ configurations.” His calculations were
extended by Jahn, Flowers, and others and are |

((rl)2'S| 7, | (nl")? 1S)=RO(1L, 11) 6, +(-)* ** ' [(21 +1)(21" +1) [ V2 3

well summarized by Judd.* More recently, the
group O(4) has been used for classifying doubly
excited states®™". The approach we suggest here
is closer in spirit to Racah’s than to that of Refs.
5, 6, and 7, since we do not emphasize, at this
stage, possible symmetries of the electron-elec-
tron interaction, but rather present a scheme for
performing calculations in a way more economical
than the conventional one in terms of Slater inte-
grals.

In order to introduce our technique, we begin
by considering the problem of two electrons in
hydrogenic levels with principal quantum number
n and coupled to total spin (S) and angular momen-
tum (L) equal to zero, i.e., S states. In the con-
ventional approach, one introduces a hydrogenic
basis |#l), expands the Coulomb interaction as

2

e e? =2 /ro\°
T k};}(}(y—)) P,(cosby,), (1)
where 7. (7,) is the lesser (greater) of », and 7,
and 0,, is the angle between the two radius vec-
tors, and evaluates matrix elements of Eq. (1)

in the basis |(z1)21S). This evaluation involves
some Racah algebra and the Slater integrals,
R®(11,1'1'). With hydrogenic wave functions, the
integrals R* can be evaluated in closed form and
tables exist® for » <4. The final result is

k1

2
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Matrix elements evaluated in this way for »=2-4 are shown in Table I, column 3. At any », there
are n(n +1)/2 matrix elements and, in their determination, one needs n(n +1)(n +2)/6 independent Slater
integrals. It is clear that the bookkeeping involved in these calculations grows explosively with in-

creasing .

Consider instead the group-theoretic approach to the same problem. Since the n? components of
the hydrogenic basis |nl), I=n-1, n-2,...,1,0 span an »? dimensional space, the group structure
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TABLE 1. Matrix elements of {(nl)2'S|e?/r,|(n1")?"s)
in atomic units (27.21 eV), calculated with a product of
hydrogenic functions. The last column is the predic-
tion within the O(z %) expansion in Eq. (7); in each case,
the first two entries are fitted to determine 4 and B in
this equation.

n 1,0 Calculated O(n?) scheme
2 0,0 0.3008 0.3008
1,1 0.4366 0.4366
0,1 —-0.1016 -0.1150
3 0,0 0.1328 0.1328
1,1 0.1726 0.1726
2,2 0.2150 0.2124
0,1 - 0.0488 —-0.0346
0,2 0.0204 0.0472
1,2 -0.0512 —0.0774
4 0,0 0.0746 0.0746
1,1 0.0938 0.0938
2,2 0.1062 0.1130
3,3 0.1288 0.1321
0,1 -0.0282 -0.0166
0,2 0.0138 0.0214
0,3 —0.0062 ~0.0254
1,2 —0.0324 ~0.0372
1,3 0.0132 0.0440
2,3 ~0.0286 —0.0568

of the problem is? U(n?) XU 4(2), where U 4(2) re-
fers to the spin. Since we consider, for the mo-
ment, only states with S=0 we shall neglect the
spin part, Ug(2), altogether and concentrate our
attention on the orbital part, U(x?). A technique
which has found useful applications in other fields
of physics where similar problems arise is that
of expanding the interaction, in this case 1/r,,
in terms of invariant operators (Casimir opera-
tors) of all the group chains which start from
U(n?) (the head group) and end with the rotation
group O(3) (the tail group).® ! If all operators
are retained, then this is only a different way of
recasting the expansion (2). The importance of
this technique lies in the fact that often a few
terms in the expansion are sufficient to describe
the interaction well. For the problem at hand,
we consider the group chain U(z?) D0®?D...
DO(3) [where the dots indicate all possible ways
of breaking O(x? down to O(3)], and retain only
two terms in the expansion,

/71 =Al4BP s+ -+ . (3)

Here 1 is the unit operator and P, is the pairing
operator of O(#2?). This operator is, apart from
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a constant, equal to the quadratic Casimir opera-
tor of O(n%, C,(0,2)."" The pairing operator P,
can be written explicitly in terms of creation and
annihilation operators for electrons. Introducing
the operators

Q+=%E(—)’(a,' 1/2-r *a,, 1/27) ’
1

(4)
Q-= %?(")1(51,1/2 '51.1/2) ’
one has
£n2=2Q+Q-! (5)

In Eq. (4), the dot is a shorthand notation for con-
traction both with respect to spin and to orbital
angular momentum* and @, l/z,ml,ms=(—)"’”l”/2"”s
Xa,,1/2,-m,,-ms» With the appropriate normaliza-
tion, the matrix elements of the operator P .,

are given by
((n1)2'S| P2 (nl")?'S)
=(=) 22+ )20 +1)] V2, (6)

For a single configuration, the operators @, and
@_ are identical to the quasispin operators.* The
introduction of @, (Q-) in Eq. (4) can be viewed
as a generalization of quasispin to mixed con-
figurations.' An important point in the definition
in Eq. (4) is the alternating phase (-)!. It is well
known from the structure of Lie groups that quasi-
spin operators for mixed configurations can be
defined with or without this phase. The physical
problem at hand dictates which choice must be
made and it is clear from Table I that the appro-
priate choice here is that given in Eq. (4). The
role of such a (=)’ factor in the early attempts
to get a O(4) classification for doubly excited
states was noted in Ref. 5.

Combining Eqs. (3) and (6) we have

<(nl)218 (nl’)215>

=A6,,, +B(=)"* (21 +1)(217 +1) M2, (7)
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In column 4 of Table I we show the values of the
matrix elements calculated using Eq. (7). In
each case, the first two matrix elements are
fitted to extract A and B and then all others are
predicted by Eq. (7). Even though there are dis-
crepancies in some of the off-diagonal matrix
elements (which are small) by as much as a fac-
tor of 4, the results are, nevertheless, striking,
considering that at any » only two parameters
have been adjusted to obtain the entire set of
numbers. In fact, they indicate that the two
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terms in Eq. (3) describe the bulk of the interac-
tion. Deferring to a later paper improvements in
the fit by including more terms in the expansion
(3), we now turn to examine some implications
of the results of Table I.

The structure of Eq. (3), a constant plus a pair-
ing term, appears in many fields of physics and
it is responsible for the occurrence of collective
pair states. One tightly correlated state splits
off from the remaining ones (“plasma mode”).

In nuclear physics, where the residual interac-
tion is attractive, the correlated pair state
moves down in energy and it becomes the ground
state.’® This state is the analog of a Cooper pair
in the electron gas. Here, where the residual
interaction is repulsive, we expect the correlated
state to move up in energy. This is shown in
Table II. The actual eigenvalues obtained by dia-
gonalizing the exact Coulomb matrix are shown
in column 2. In column 3 we show the results ob-
tained in the O(n2%) scheme. Here all but one
state remain at energy A. The collective pair
state moves to energy A +B}, (2l +1) =A+B#n?,
Although the O(n?) scheme overestimates the en-
ergy shift, it is clear from Table II that a col-
lective mode is formed, since the spacing be-
tween the highest eigenvalue and the one below

it is comparable to the entire spread of all but
the highest state. It is very intriguing to suggest
that the state which peels off from the rest is
related to the state that dominates the threshold
process of double electron emission,*~!® which
we call the Wannier state.'” If that is so, the
way in which the Wannier state will evolve will
depend only on the behavior of the coefficients

A and B with increasing n. From the general
ideas of quantum-defect theory, we expect these
coefficients to have an expansion in 1/n, starting

TABLE II. Eigenvalues in atomic units of the Cou-
lomb matrices of Table I. The third column is the
prediction of the O(#?) scheme.

n Calculated O(n?) scheme

2 0.4894 0.5000
0.2460 0.2344

3 0.2648 0.2928
0.1570 0.,1128
0.0986 0.1128

4 0.1686 0,2186
0,1086 0.0650
0.0738 0.0650
0.0526 0.0650

with 1/n% The calculated values of A for n=2-4
seem to be described well by a 1/n? scaling.
Given the limited set of numbers it is less clear
whether the coefficient B starts with 1/»2 or 1/%%.
Our emphasis on A and B and their » dependence
stems from the fact that, physically, the most
correlated two-electron state is the one near
threshold. The group-theoretic analysis of the
electrons as a pair should, therefore, be most
suited to describing this state which will exhibit
the highest symmetry. Looking down the rest of
the family of doubly excited states with decreas-
ing n, there will be a gradual weakening of this
symmetry with more terms in the expansion (3)
being required for their accurate description.
We also note that the configuration mixing in-
volved in describing a 'S doubly excited state
stretches to include different » values for the
electrons: However, the mixings are strongest
within the same n because they are diagonal in
the energy. This motivates why we concentrate
on this situation and our belief that symmetries
will then be most easily uncovered.

The technique presented here for 'S states can
be extended to include other states. In a study
of the experimental data available on n=2 and
n =3 doubly excited states of the He isoelectronic
sequence, a rotorlike spectrum for states of dif-
ferent L has been noted.” Within the framework
discussed here this spectrum would arise, for
example, by including in addition to the quadratic
Casimir operator of O(n?), the quadratic Casimir
operator of O(3), i.e.,

e?/r,=A1 +BP,» +CC,(0O;), (8)

where (C,(0;))=L(L +1). The behavior of the
coefficient C with » will provide some interesting
insight into the way in which the rotorlike struc-
ture evolves for large n. Our results, to be pre-
sented elsewhere, show that C has a 1/n® de-
pendence. This conforms to the understanding
that L is relatively unimportant for the Wannier
state, 17

In conclusion, we have presented here a group-
theoretic technique based on the expansion of the
interaction into invariant operators. The virtue
of this technique is that the expansion may be
rapidly converging, thus giving rise to major
simplifications in the calculations. These simpli-
fications are particularly important when many
configurations must be admixed (r large). Al-
though we have applied here this technique only
to the study of correlations in two-electron con-
figurations, (n!)?, it is clear that the same tech-
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nique can also be used for studying correlations
in multielectron configurations. For example,
matrix elements of the pairing operator P,, can
be easily constructed'’ for configurations of the
type (nl)¥, N>2. This may lead to considerable
simplifications in the calculation of the structure
of complex atoms,
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