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Directed Percolation in Two Dimensions: Numerical Analysis and an Exact Solution
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We study directed percolation in two dimensions. Critical properties, such as the
threshold p, and the correlation length exponent v, depend on the direction y at which
percolation is observed. We observe crossover from v(cp= 0) to v(p &0); similar cross-
over is found when the probabilities assigned to vertical and horizontal bonds, pz and

p&, become unequal. For the case p& = 1 we solved the problem exactly, obtaining

P, {y) = {1+COt {47I —y)i ', p = 2.

PACS numbers: 05.70.Jk, 05.50.+q

The problem of directed percolation, first
posed by Broadbent and Hammersley, ' is the sub-
ject of considerable current interest. Obukhov'
has shown that directed percolation belongs to a
different universality class than nonoriented per-
colation; the upper critical dimensionality is d
=5 (rather than d =6). Cardy and Sugar' estab-
lished a mapping between directed percolation
and Reggeon field theory, relevant to high-ener-
gy physics, which, in turn, was shown"'to be
related to Markov processes with branching, re-
combination, and absorption that occur in chem-
istry and biology. ' In two dimensions numerical
studies which use Monte Carlo, ' series, ' and fi-
nite-size scaling techniques" have recently been
performed.

To define a problem of directed percolation, '
consider a square lattice. To each edge of the
lattice a bond either is assigned with probability
p or is absent with probability 1-p. The hori-
zontal bonds carry a left-pointing arrow, and the
vertical ones a down-pointing arrow. One wants
to calculate the probability P(R,p) that a pair of
sites at 1) and R are connected by a path of bonds
that can be traversed in the direction of the ar-
rows (see Fig. 1). There exists a value p, such
that for p &p„P(R,p)-exp[-~R~/g] with $- {p,
-p) . For p&p, there is one (or more) infinite
path. Numerical estimates for p„v, and other
exponents were obtained for various two-dimen-
sional lattices. "' "

An important observation" is the angle depen-
dence of the function P(R,p). As opposed to ordi-
nary percolation, where P (R,p) depends on R =

~ R~

only, here, for given', the function I' varies
with the angle Ip (see Fig. 2). By construction,
P ~(R,p) =0 for ~Ip~ &45 . Percolation occurs when,

for p &p„one haSI lim„P ~(R,p) = 0 for
~ y~

&y, (p), and nonzero for ~y~ &y, (p). That is, per-
colation occurs in;a "cone" of width Ip, (p) cen-
tered at p = 0. The critical angle Ip, (p) goes to
zero as p -p, +.' As a direct consequence of this
anisotropic behavior of P, one can define an an-
gle-dependent correlation length g ~(p) for y
&Ip, (p), p &p„via P ~(R,p)- exp[-R/$ ~(p)]. This
rather unusual anisotropic critical behavior is
the subject of our study.

Our findings can be summarized as follows:
(1) The correlation length diverges according to

5,( p)-[ p. (9)-p] '", (1)

i.e. , the threshold p, (y) &p, (0) and the exponent

v(y) depends on the angle y at which percolation
is observed.

(2) We found crossover from behavior charac
teristic of y = 0 to a different type at p ~ 0; that

N=a L

'& n6=6

n) -"2

FlQ. l. A particular directed-bond configuration,
with all horizontal bonds present (pz = 1). The heavy
line indicates a proper connecting path from 0 to H . n;
is the horizontal position of the vertical bond in the
i ' th row that belongs to this path. Other connecting
paths are characterized byn;'~ n; .
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is, for all qw 0, v(cp)= v, o v(0).
(3) The same behavior is obtained at fixed cp =0,

when different probabilities p„and pv are as-
signed to horizontal and vertical bonds; v(p„x pv)

v 0 v(p H pv)'
(4) For the case p„= 1, we found for any

~ y~

(m/4

p, (y) =[1+cot(p/4 —y)] '; v, =2. (2)

Results 1, 2, and 3 were obtained by calculat-
ing P ~(R,p„,p„) by the transfer-matrix method,
for infinite strips of finite width, and with use of
finite size scaling. Results 4 are obtained from
the exact analytic solution of the p„= 1 problem.

We start with the finite-size scaling method"
to estimate P,(y) and v(cp). This technique has
been recently applied to ordinary" and directed"
percolation. The correlation length $ ~(p, 1/N) is
calculated from the largest eigenvalue g, of the
transfer matrix T ~(S,S'), $~ '=lt9, T ~(S,S') is
defined on a strip of width N with fixed angle y
as shown in Fig. 2. T ~(S,S') gives the probabil-
ity that, say, row M+1 is in state S if rom M is
in state S'. Here 9 and 8' are just Ising-like
states, i.e. , a given site i has the value +1 if it
is connected to row 1 by a path of bonds, or —1,
if it is not connected. Thus T ~(S,S ) is a matrix
of size 2"x 2; it can be written as a product of
N sparse matrices, each having 2& 2 nonzero
elements only. The largest eigenvalue g, is found

by numerical iteration. We calculate $0 for
strips of width N up to N=15.

If N is large and the system is near criticality,
$ ~ obeys the scaling relation

g, (VP, 1/N) = b'g, (b' 'uP, b/N), (3)

where b is a change of length scale in the (finite)
direction of the rows, 5p = (p, —p)/p, and 8 is the
anisotropy exponent. "p„8, and v are calculat-

ed by Eq. (3) with use of three strips of width N,
N —1, and N- 2. For N& 15, the results still de-
pend on N to some extent, and extrapolation to
N- ~ is obtained by fitting the N dependence by a
quadratic form in 1/N.

Table I shows the results" for tang = 0, 3, and
For y = 0 the results are in agreement with

those of series expansion for directed percola-
tion, ' and Reggeon quantum spin models, ' and of
Monte Carlo calculations' for branching Markov
processes.

Our results show that the percolation threshold
p, becomes larger with increasing y. This means
that one has to increase the number of bonds un-
til the percolating cone goes through the direc-
tion of observation. Furthermore, Table I shows
that y = 0 critical exponents are very different
from the cpo 0 ones. However, within the error
bars we see the same exponents 8 and v for both
of the nonzero values of y considered. This in-
dicates a crossover from the y =0 values to uni-
versal ones for all yg 0.

Thus we see a different critical behavior of the
correlation length when observed in or off the di-
rection of the percolating cone. In order to check
whether this is a general result we have rotated
the percolating cone and then calculated the y =0
correlation length. Obviously the cone can be ro-
tated by allowing pswpv, where p„and p„are the
probabilities of horizontal and vertical bonds, re-
spectively. From the scaling of $ ~, ~(p, 1/N),
Eq. (3), where pz=p, pv=Xp, we obtain the p-&
phase diagram shown in Fig. 3. The exponent v

for g = 1 corresponds to the p = 0 results men-
tioned above. " For ~ g 1 we find a crossover to
the yg0 exponents of Table I; for bothy=4 and
and 2 we get 8 = v =2.0+ 0.1. This supports the
idea that the exponents v and 8 which describe
the divergence of a correlation length outside of
the percolating cone are universal.

We now present the exact solution to the prob-

TABLE I. Angle-dependent percolation threshold
p, , anisotropy exponent 6, and correlation length ex-
ponent v for directed bond-site percolation with p,
=pq =p (pq andp~ are the probabilities of occupied
bonds and sites, respectively).

FIG. 2. An infinite strip of width N, oriented at y
from the diagonal, used in the transfer-matrix method.

0
X/3
1/2

0.8228(l)
0.8582 (4)
0.887&(3)

i.583(~)
2.0&(X)
2.004(2)

1-732(3)
2.03(2}
2.04(&0)
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FIG. 3. Phase diagram of a system with horizontal
bond probability p« =p and vertical bond probability
p» =Q. Percolation is observed at y= p,

lem with p„= 1, 0 & p» =p & 1. This two-dimen-
sional percolation problem can be expressed in
terms of a one-dimensional model, and therefore
the solution is quite simple.

Consider an infinite lattice. Choose any site

as the origin 5 and consider another site, R, at
N- 1 steps to the left and L steps down. We cal-
culate the probability P« ~(p) that a properly di-
rected path, such as that of Fig. 1 connects t} and
R. To avoid traversing the path in a direction op-
posite to the arrows (that point left or down) a
proper path has to stay within the rectangle whose
opposite corners are 1}and R. Such a path can be
characterized by a set of I. integers fn;). n; de-
notes the horizontal location of the first (i.e. ,
closest to the "target" corner R) vertical bond
present in the first rom from bottom. n, is the
location of the first vertical bond present in the
second row, such that n, ~ n„and so on; the con-
straint on the Lth vertical bond is n~ ~ N.

Note that only in our special case of directed
percolation, with p«=1, is it sufficient and possi-
ble to parametrize a connecting path in this man-
ner. (If p«&1, for some bond configurations a
connecting path may be drawn only through the
second, rather than the first vertical bond pres-
ent in the first row. ) The probability for such a
path is given by

Pi, «hn&);P) =P'(I -P)"' '(I -P)"' "' (1-p)"' "'-'=p'(1-p)"' '

and P»(p) is given by summing over a)1 n, such that

(4)

Tli 773 7l2

PI. „(p) p Q (1-p) & ' g ~ ~ ~ g p I p g (1-p) & 'II, (ni). (5)
nL 1

The coefficients I~(m) are given by'~

(6)

dP~ «(x)/dx

=- (L+N - 1)r, ,(N}x'-'(1-x)'-'.

Integrating (7) and using P»(x = 0) = 1, we get by
the method of steepest descent, for L,N- ~,

P „(x)= 1 Af„-, e.xp(- —,'g')dg,

where B =[a (1+a)]"',a =N/L, e = (x -x,)/x„x,
=a/(1+a), A = (N+I. +1)I,(N+ 1)x,[x,"(1-x,)]'/
BL' '. When Stirling's formula is now used for
the factorials in I~(N+1), we obtain, in the limit

(8)

To see this, note that the coefficients I~(m) satis-
fy the recursion relation I~(m) =I~(m —1)+I~,(m)
by their definition (5); the same hpids alsp fpr
( +p '). This together with direct evaluation of
I,(m) and I,(m —1) shows that (6) holds for all L
and m. In order to calculate P~ «(p) by (5) s,nd

(6), denote x= l-p, and note that the function

Pz, „(x) satisfies the relation

nL 1

L)N
P &P.(a)

»m P~ «=&i(P) = 2, p =p.(a)

P &P.(a),
with p, (a) =[1+a] '; with our definitions pf a and

y one has tan(4m —y) = 1/a.
»nce p„= 1, even for very small p» =p the sys-

tem always percolates at directions sufficiently
close to horizontal (cp =45'). To obtain v, note
that P»(1-p} as given by (8) is already in scal-
ing form; as L -~,A - (2n ) "'[1+0(1/L)] and the
only dependence on e ~p —p, comes through the
upper limit of the integral, i.e. , eL' '. There-
fore length scales like e '; explicitly, from $

'
=-Iim~ „ln(P~ „~/L) we get ((a,p)-[p, (a)
-p] ', that is, v=2.

From Eqs. (8) and (9) we see the seemingly cu-
rious result that for p &p„ lim~ „P~ ~=1, while
I'~ ~ & 1 for finite L. This feature results from
our choice p«=1, p„&1; with such choice, the or-
dinary (nondirected) percolation problem exhibits
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analogous behavior as well. That is, for an infi-
nite system, for p»&p, =0 one will have &~ „z=1
for all L, whereas for a finite system I'~ „~&1.
By definition of the directed-percolation problem,
keeping L finite corresponds to working with a fi-
nite lattice. Also, since for ordinary percolation
with P„=1,limz „Pz „z "jumys", to the value 1
for p &p, = 0, clearly this jump is not related to
the standard definition of the exponent P.

We have calculated v exactly for the special
point p„=1of the phase diagram of Fig. 3. As
mentioned before, the numerical analysis indi-
cates that v=2 holds for the general case p„g 1,

pH +p» too
We want to mention that Eq. (9) for n = 1 can al-

so be obtained from a duality transformation
which maps a system with p„= 1, p» to that on the
dual lattice with p„= 1 -p „and p» = 1.

Note also that (1-x) p»(x), Eq. (4), is the
partition function of L particles on a chain with
N sites, with nearest-neighbor interactions
E;;,, = —ks T lnx~n; n;, -,~. From Eq. (8) one
easily obtains that the free energy is zero for
x~x, (a) and increases as $

' for x&x, (o.). Thus
this system has a second-order phase transition
at x, (o. ) with a jump in the specific heat.
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