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Crossover from Fluctuation-Driven Continuous Transitions to First-Order Transitions
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Near a tricritical point of ann-component spin system, fluctuations turn the first-order
transition (predicted by the Landau theory) into second order. We show that when this
happens, quadratic anisotropies turn the transition first order again. In systems which
exhibit fluctuation-driven first-order transitions, increasing anisotropies yield two con-
secutive tricritical points. These effects are predicted to result from the application of
magnetic fields or uniaxial stresses to MnO, BaTi03, KTa„Nbf g03 (KTN), TbP, etc.

PACS numbers: 64.60.Kw, 05.70.Jk, 75.40.Bw, 77.80.Bh

In most cases, Landau's theory' provides a cor-
rect qualitative description of phase transitions,
including their order. It was only recently real-
ized that a variety of transitions, predicted by
Landau's theory to be continuous, are driven by

fluctuations to be first order. " Technically this
happens when there exists no fixed point which is
accessible under the renormalization-group (BG)
iterations. As the RG is iterated, and the fluctua-
tions are gradually eliminated, the effective
Hamiltonian flows into a range of instability where
even the Landau theory predicts a first-order
transition.

Much less attention has been given to fluctua
tion-dhi ven continuous transitions. In the present
I etter we emphasize that such transitions always
occur in the vicinity of tri critical points Starting.
with the usual Landau-Ginzburg-Wilson Hamilto-
nian for?z-component spins g(x)j in d dimensions,

~ = fd"x(~l vsl'+ Trlsl'+u, lsl'

+u, lSI'+O(ISI')], (1)

the Landau theory predicts that the transition be-
comes first order for u, &0 (u, &0). In fact, fluc-
tuations shift the tricritical point down to M, =0,
with4 '

u ~
=u ~ +C (?)zu

q6
C (?z ) = pK@ (?z +4) q

K, =1/8??'.

In the range —C(?z)u, & u, & 0 we can thus consider
the continuous phase transition as being driven by
fluctuations. ' The crucial role played by M„
which is essential for stability when M4 0, has
been ignored in many earlier discussions.

A very useful tool in the study of critical be-
havior has been the application of symmetry-
breaking fields. ' In particular, the quadratic
anisotropy

X, =~gfd'x [m IS„.I' (n -m)IS-. I']jn,

where S„„and S are the (?z -??z)- and ~-compo-
nent parts of the vector 8, will generate a cross-
over from the n-component critical behavior to
that of the m- [or (n -m)-] component one for g
& 0 [& 0]. For convenience, we consider only g

gj, ?
/

/
/

/
/

/
/

/

gi) ! glk

(a) (b) (c)

gi)

J TP

TP

(d)

gii I
/

/
/

/
/

/TP

'TP

(e)

/TP

gii
/

/
I

/
/

g)i

. l TP

TP

(g)

FIG. 1. Schematic g-& phase diagrams. Dashed (full)
lines represent second- (first-) order transitions. TP
is a tricritical point. The (high-&) transitions for g &0
(& 0) are into an ~- f (n —~)-1 component phase t. we
chose m & (n —~) l. (a)-(c) are for the isotropic case;
(d)-(f) are for the cubic case, with u6&u6 and v &0; and
(g)-(i) are for the cubic case and e &0. Each triplet"
of figures corresponds to decreasing values of u4.
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FIG. 2. Schematic g-u4 phase diagram, m & (n —m) .
The (tricritical) lines separate regions of second- and
first-order transitions.

& 0, the results for g& 0 being obtainable by re-
placingg--g andm —(n-m). If u, &0, Eq. (3)
generates the well-studied bic~itical phase dia-
gram, ' shown in Fig. 1(a), observable in many
anisotropic antiferromagnets under a magnetic
field, ' in structural transitions under uniaxial
stress, "etc. In the present Letter we show that
when —C(n)u, &u, & —C(m)u„ then the application
of the anisotropy field g may turn the fluctuation
driven continuous transition, expected for the n-
component system, back into first order [Figs.
1(b) and 1(c)]. As function of g, the tricritical
point (u4 =0 at g =0) splits into two tricritical
lines (Fig. 2), given for small g& 0 by

u4 g =[u4+C(n)u6]g =B~gt. q P = pd —1,

A similar expression, with &„and -g, replacing
and g„describes the tricritical line for g 0.

The ratio B /B„= (n -m)/m is universal. Since
P & 1, the two tricritical lines approach the u,
axis tangentially. Similarly, the tricritical points
in Figs. 1(b) and 1(c) are given by g, =A t, and

g, = A„ t„-with t, =[T,(g) —T, (g =0)]/T, (g =0)
and A /A„=m/(p -m). These results are valid
for d&3. Atd =3 they may be modified by loga-
rithmic corrections, ' and the exponents describing
the curves in the u~-g and I, -t planes will have a
different dependence on d' for d & 3.'

It has recently been shown" ' that symmetry-
breaking fields like Eq. (3) may turn fluctuation-
driven first-order transitions back to second or
der [(Fig. 1(d)]. This effect has indeed been ob-
served in MnO (Ref. 15) and in RbCaF, (Ref. 16)
under appropriate uniaxial stresses. Note that
tke neu effect predicted in tkis Letter is the "in

verse" of the one observed there. Moreover, we
find that if the fluctuation dr-iven first or-der
transition occurs in the vicinity of a tricritical
point (which bounds the range of attraction of an
accessible fixed point) tken there is a ~ange in
sohich tke symmetry breaking first turns the
fluctuation driv-en first ord-er transition into sec
one order, and then turns it back into first o~der,
via tuo consecutive tricrztical points [Figs. 1(e)
and 1(f)].

The new effects predicted in Figs. 1(b), 1(c),
and 2 will occur near isotropic n-component tri-
eritical points, with n ~ 2. In the simple exam-
ples of this kind, e.g. , that of 'He-'He mixtures, "
it is impossible to break the symmetry experi-
mentally. However, we predict the effects to be
observable near tricritical points such as that of
MnO. '"'" A uniaxial stress p&p, = 5 kbar"
along [111]turns the fluctuation-driven first-
order transition of the eight-component antiferro-
magnetic order parameter into a continuous one,
described by an isotropic bvo-component order
parameter vector [in the (111)plane]. For p & p„
we predict that a magnetic field in the (111)plane
will yield Figs. 1(b), 1(c), and 2 (u, is repre-
sented here by p, and m =1).

Figures 1(e) and 1(f) will be realized, e.g, for
the cubic to tetragonal ferroelectrie transitions
in BaTiO„"or KTa„Nb, 0, (KTN)." In such sys-
tems, there is an additional cubic interaction'

&„=v Q(S )', v&0. (5)

Landau's theory' predicts a first-order transition
for M, +v & 0, while we find that fluctuations shift
the tricritical point to w =u, +3v/(4-n) = 0. In-
creasing the hydrostatic pressure on BaTio„"
or the concentration x in KTN,"moves the param-
eters M„v, and u, through this tricritical sur-
face. As this pressure (concentration) is in-
creased we predict that additional uniazial stress
along, e.g. , [100]will yield the sequence of dia-
grams shown in Figs. 1(f), 1(e), 1(d), and 1(a)
(n =3, m =1,2).

Another possible realization is TbP .'"'" A
uniaxial stress or a magnetic field along [111]
may turn this n =4 fluctuation-driven first-order
transition into an n =3 (cubic) continuous one. Ad-
ditional uniaxial stress along [I11], [111],or
[111]will then yield our Figs. 1(e) and l(f).

Our analysis starts with the Hamiltonians (1)
and (3). Equation (2) simply follows from the fact
that under the HG iterations u, generates new con-
tributions to M~. The correct scaling field near
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the Gaussian fized point Q, =u, = 0) describing the
tricritical point is thus M4, and not M4. Higher-
order terms are not expected to modify this qual-
itative picture. For g» 1, the fluctuations in the
(n -m)-components of R„become small, and
we can integrate S„out of the partition func-
tion, leaving an effective m -component spin
Hamiltonian. ' In this Hamiltonian, which has
the same form as Eq. (1), the new coefficients
will beu, ' =u, andu, ' =u~+ 3(n -m) I,(r„)
ue, where r„=r +mg/n, I„(x)= fq (x+ q )
and where we ignore corrections of higher order
in u4 and u, ." This m -component Hamiltonian
will now have a tricritical point at u, ' =0, i.e. ,

=u, ~, + 3(n —m)[I, (r„) &K,]—u, =0. (6)

Since I,(r) is monotonically decreasing with r, it
follows that if —C(n)u, &u, & —C(m)u, then u '
will change sign as function of g, becoming neg-
ative for sufficiently large g (Fig. 2). For very
large g, the tricritical point occurs at g, = —3(n
-m)K,u, /{4[u, + C(m)u, ]]. Similar results are
found for g &0.

For small g we must first eliminate some of
the fluctuations. ' ' We iterate the RG trans-
formation until r„(l~) = 1 (for g & 0), and then
integrate S„out of the partition function. In
the vicinity of the Gaussian fixed point, in d =4
- e dimensions, one recovers Eq. (6), in which
u„u„and r„are replaced by u, exp(el~),
u, exp[- 2 (1 —e)l~], and 1. Demanding also that
the effective temperature scaling field, t ' (l~)
= [t —(n -m)g/n] exp(2l~)+ O(u4, u6) {where t =[X
—&, (g =0)]/T, (g=0) is a combination of r, u„
and uj, should vanish, we end up with Eq. (4)
and B =[ ~K, —3E,(l)] (n —m)u, =~K, ln2(n —m)u, .
The ratio 8 /B„ thus follows immediately.
Similarly, we find that A =n/ (n —m).

In terms of Hamiltonian flows in the u, -u,
plane, we start above the line u, =u, + C(n)u, =0
and iterate l times. For small g, the flow
crosses the m-component tricritical line, u, (l~)
+ C(m) u, (l~) =0, and the m-component transition
remains second order. For large g the flow ends
below this line, and the transition becomes first
order.

To obtain Figs. 1(d)-1(f), we now add the cubic
Hamiltonian, Eq. (5)." In the presence of v, the
condition for tricriticality becomes w =u, +3v/(4
—n) =0, representing a plane in the u4-u, -v space.
Points below this plane will have a first-order
transition (no accessible fixed point), points on

this plane will have a tricritieal behavior (flow
to the "cubic" fixed point), ' and points above this
plane will have a continuous transition (flow to
the "Heisenberg" fixed point, with v =0). We
next eliminate S„„(either directly, for g» 1,
or after l~ BG iterations), and obtain an effective
m -component Hamiltonian. To leading orders,
u4" andu, ' are the same as before, and v'
=v. We then find m' as a function of g, and
solve w' (g) =0 for trieriticality. Including
terms of order u, ', this equation has two accePt-
able solutions if u, &u, = —2v/[K4(4-n)(4-m)]
and u, + C (m) u, +3v/(4 —m ) & 0.2' This generates
Fig. 1(f). In terms of flows, one should note that
although u, is "irrelevant" (decaying to zero for
large l ), it drives u~ towards higher values in
the first few iterations. ' Later, v takes over in
driving I' towards negative values. If one
starts sufficiently close to the m-component tri-
critical plane u, + C(m) u, + 3v/(4 —m) =0 (and
below it), with u, &u„ then the flow crosses the
plane twice. For u, &u, and ~ & 0 we again pre-
dict the diagrams of Fig. 1(b) and 1(c). Both the
m-component tricritical points found for g& 0 in
Fig. 1(f) will now be given byg, A t,~, with y=l
+ e/6+ O(e') being the anisotropy crossover ex-
ponent at the cubic fixed point' and with" A, /A,

(~) 1/ 3

The above results are all for v &0, i.e., for
bic~itica/ phase diagrams. When v & 0 and u4& 0,
tetracritical points are expected [Fig. 1(g)]."
We expect that for an appropriate range of u4&0
and uo& 0 this phase diagram will turn into one of
those shown in Figs. 1(h) and l(i)."

In conclusion, we have shown that the interplay
between fluctuations and symmetry breaking
yields many new kinds of tricritical points. We
hope that the many physical realizations listed
above will stimulate experimental checks of our
predictions.
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