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Critical scattering predictions of the Percus-jt'. evick, hypernetted-chain, and avon-Born-
Green integral equations for fluids are described for general dimensions d. The first two
equations are unsatisfactory. The Yvon-Born-Green equation predicts critical scattering
of Ornstein-Zernike form for d & 4, but for d ~ 4 the compressibility, K'I, remains bound-
ed unless the net correlation function, g(r) —I, becomes negative near criticality for
intermediate and large &: In that case scaling behavior occurs with ~~=4 —d and Kz —+~
for d & d 0

—2.2.

PACS number: 61.20.Gy, 05.70.Jk, 64.60.Fr

Approximate integral equations for classical
fluids have long been a cornerstone of modern
theories of fluids. ' The study of such equations
is also instructive because they are prototypes
of more complex equations for many-body quantal
systems. At low densities the usual equations,
in particular the Percus-Yevick (PY), hyper-
netted-chain (HNC), and Yvon-Born-Green (YBG)
equations, are satisfactory since, for a given
pair potential, q(r), they reproduce correctly
the leading virial coefficients. The predictions
of these equations for the critical region of a
fluid, however, have remained obscure and un-
related to modern theories of critical behavior
where the spatial dimensionality, d, play a cen-
tral role. ' This has impeded the construction of
unified theories for fluids that would encompass,
in a reasonably quantitative way, both proper
critical behavior and the effects of realistic, con-
tinuum potentials.

Here we report analytical work which bears on
the nature of the critical scattering predicted by
the PY, HNC, and YBG equations for general d.
Ideally, one would like, for d=2 and 3, to obtain
reasonably, nonclassical values of the critical
exponents, ' particularly y, which specifies the
divergence of the compressibility, K~, on the
critical isochore (i.e. , at density p= p, ), and q,
which describes the critical point decay of the
net pair-correlation function, h(r; p, T) = g(r) —1,
as 1/r" 2'". For d&4 the classical values y=1
and g=o should appear. ' Qne might also hope
to find scaling behavior' in terms of the correla-
tion length, (, and the density deviation, (p —p, ),
as observed experimentally. In this light we con-
clude that both the PY and HNC equations are
quite unsatisf actory.

The YBG equation, however, has excited inter-
est recently because numerical studies' for d = 3
have suggested exponents agreeing well with ex-
periment, e.g. , y =1.24. To examine this we

have extended a new analytical approach' [for
finite-range potentials, i.e., y(r) = 0 for r &R,]'
which had revealed apparently anomalous behavior
precisely at criticality. We find, first, (A) that
for d&4 the YBG scattering function in the criti-
cal region is, indeed, asymptotically of classical
or Ornstein-Zernike (OZ) form' just a's renor-
malization-group ideas imply. In addition, for
all d -4 we show there are only two possibilities:
Either (B) as $ —= 1/e(T, p) diverges on approach
to criticality, the correlations obey the asymp-
totic scaling relation

h(T, p; r) r ' ""'D(Kr),

with q=4-d, while h(r) becomes negative for
intermediate and large r in the critical region
(see below); or (C) the YBG equation exhibits no
criticality, in the sense that K~ remains. uniform-
ly bounded. In fact, only (C) applies for d &2 (as
has been shown separately' for d = 1). Despite
the unexpected and, perhaps, unphysical nega-
tivity of h(r) under (B) the compressibility [as
computed from K~- y=1+ p Jh(r) d"r] diverges
to +~ provided d&d, =2.2; however, for 2 +d
&d, a divergence to -~ is implied t But if the
YBG (p, p) isotherms vary smoothly, as essen-
tial physically, this latter behavior is seU-con-
tradictory, leaving only the possibility (C). For
d = 3 the best current numerical solutions" still
suggest that h(r) stays positive (for r &2R,), so
that the YBG equation for ordinary space may
well exhibit no true criticality at all.

To explain the arguments underlying our con-
clusions consider first the PY equation. For
short-range potentials it insists that the direct
correlation function' is alzoays of finite range. It
follows directly that the critical scattering is of
OZ form for al/ d; specifically Eq. (1) holds
with q=0 while D(x) —= Doz(x) is x' ' times the
Fourier transform of 1/(1+q'). However, even
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though the PY equation fails to exhibit the anti-
cipated nonclassical scattering behavior' for d &4,
the OZ form is a fairly good approximation for
real fluids and q(d =3) =0.03 is rather small.
Nevertheless, although one can also show, ' on
the basis of Baxter's exact solution for sticky
hard spheres, ' that the PY equation of state
scales with classical exponents (including y =1),
the scaling function displays a nonclassical singu-
larity: In particular, the usual asymptotic gas-
liquid symmetry, which is well confirmed by ex-
periment, is strongly violated, with K~ diverg-
ing more strongly for p & p, . Furthermore, the
specific heat, C„(T), diverges logarithmically
(a =0) not only on the critical isochore p = p„
which is a plausible approximation to reality (o.
=0.12), but also' at T=T, for all p&p, : This,
of course, is completely unphysical. Comparison
with the numerical solutions of Henderson and

Murphy (see Ref. 1) for a Lennard-Jones poten-
tial indicates that the unphysical behavior of the
PY equation for d = 3 is not just an artifact of the
sticky-hard-sphere model. For d =2 the unphysi-
cal PY-OZ prediction h, (r)--inr- -~ should
also be recalled.

Less can be said analytically at present about
the HNC equation; however, careful extension
of an argument due to Green' shows that the
critical point decay exponent must be q= 3(6 —d)
for d «6 but sticks at g= 0 for d ~ 6. Thus the
HNC equation does exhibit a borderline dimen-
sionality, but at d &

=6 rather than 4.' Although
positive q is predicted for @=2 (as needed physi-
cally) the numerical values for d = 2, 3, and 4 are
all poor. Furthermore, numerical solutions for
d = 3 demonstrate that K~ diverges at most very
weakly, "say" y ~ 0.04, which is completely un-
realistic l

Our analysis of the YBG equation" rests on a
reduction' of the full integral equation' to a sec-
ond-order nonlinear differential equation for h(r),
valid for small ~Rp and r a 2Rp and subject to
the boundary condition h(~) =0. The original dis-
cussion focused mainly on ~ =0, the critical
point itself, and revealed changes in behavior at
d =4 suggestive of the correct borderline dimen-
sionality'; it was noted, however, that, physical-
ly, the limit z-0+ represents the crucial issue.
To elucidate this we take two further steps.
First, we impose a second, "short-distance"
boundary condition, h(a) =h, (T, p), where a a 2R,
is fixed: The precise value of h, entails solu-
tion of the YBG equation at short distances (~ 2R,)

but only its boundedness is needed here. Second,

by putting

/z(r) =-(c/r)'Z(x; z), with x =e = Kr, (2)

where c(T, p) varies slowly, the nonlinear equa-
tion4 can be cast in the scaled form

dZ dZ, +(d —6) +-,'(4c+Z)z=x'Z, a=4-d. (3)

The boundary conditions become (a) Z/x'-0 as
x - ~; (b) Z(/ca; z) -z, -=h, a'/c' as K - 0. Note
that the explicit dependence on z in (2) enters
through the new condition (b).

Now when (3) is linearized the solutions satisfy-
ing (a) yield k(r) in precisely OZ form'; further-
more Z(x) then varies as x' "for x ~1. Con-
versely, to satisfy (b) requires x -0 and allow-
ance for the nonlinear term; but (3) then be-
comes autonomous and analysis in the phase
plane, (Y=dZ/dw, Z), where there are just two
fixed points, 0, =(0, 0) and 0, =(0, -4e), is re-
vealing. 4 For d &4 one readily discovers a unique
class of solutions, Zo(kx), which flow into 0,
and are parametrized only by k &0. By choosing
0, the condition (b) ean be satisfied [yrovided
only z, ~Z, '" =d(d-4) and, for d& 6, z, &0].
One also finds that Z, (x) varies as Z "x' ' for x
~x,(~) «1 with Z "&0. This crucial fact enables
the autonomous solution to be matched smoothly
onto a linearized, OZ-type solution with errors
of relative order ~~'~-0. " The scaled matching
point, x, -=mr„ is found to Uanisk like (za) ~

'
~ &' '~,

so that (1) holds asymptotically with g=0 and
D(x) =Doz(x), as stated. Note, however, that the
function Z,(x) determines the behavior of h(r) for
r up to ~„which actually diverges to ~ as K-0 t

In summary, the YBG equation exhibits correct
OZ scattering behavior above the correct border-
line, d&=4. ' This implies X-~ ' and scaling
relations such as y=2v, but we have not been
able to show convincingly that, e.g. , y takes its
classical value.

For d «4 the situation is more complicated.
First, the autonomous equation for d&4 has no
solutions which approach 0, as x -~ (that might
be matched to OZ, linearized solutions). (For
d =4 there are such solutions for Z «0 let they
play only a subsidiary role. )"'" Rather, any
positive solution of the autonomous equation
flows to a point where Z =0 and dZ /derv &0: One
can prove that such solutions of the full Eq. (3)
can never satisfy (a) as x - ~." Next one shows
that for small x, needed for (b), the only positive
solutions of (3) satisfy"'" Z(x) =A~'(1+ ~ ~ )
+A x + ~ ~ ~, but that if (a) is satisfied the ampli-
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tudes A. , and A are bounded above: Qf course,
this is not hard to check by numerical integration.
It then follows that, as ~-0 with k„z,&0, it will
eventually become impossible to satisfy both con-
ditions (b) and (a). Current numerical studies of
the full d = 3 YBG equation check the accuracy'
of (3) for small xi'„but as yet reveal no unequi-
vocal signs that ~ becomes small enough to en-
counter this conflict. "Nonetheless, if h(r) re-
mains positive for fixed r & 2&„ it follows that
~ cannot become too small: Thus the compressi-
bility integral, )(, can at most yield a large but
finite Kr, in accord with alternative (C) stated
above.

If h, (and so z,) becomes negative in the critical
region the relevant solutions for small x are de-
termined by the fixed point 0, as Z(x). = —4e +x'
+&x ~ + ~ ~ with f (4) =0 & f(d) «(1) = I for I & d
&4.""The phase plane trajectories reveal that
any value of s, (&0) yields a solution which, as
v-0, approaches the principal solution, Z (x),
of (3}which satisfies (a) and the modified condi
tion (b') Z(x)- —4& asx-0 (corresponding to the
coefficient B, of the term x above, vanishing).
Since (3) is of second order, (a) and (b') should,
and indeed do, suffice to determine a unique solu-
tion which, however, must be computed numeric-
ally. Via (3) we have thus established that (l)
holds withD(x) =c'Z (x) and q =4-d, as stated.
The negativity of h(x) for intermediate and larger
x follows"' because (b') implies Zt(x}&0 for small
x. The scaling implies Kz-I(."' for d & 2, and
—lnK for d =2; but the sign of divergence is fixed
by the integral I~ = fo Zt(x)x' 'dx: For d &d, = 2.2
this is positive since Z (x) becomes positive for
large x.' However I~ is negative for d &dp and
diverges as —8/(d —2) when d - 2+. Finally, Kr
cannot diverge for d&2 even if K-O.

In overall summary, while the YBG equation is
the only one of the standard integral equations for
fluids to exhibit the desired transition to classical

critical behavior at the correct borderline dimen-
sionality, d& =4, its analytic character for d - 4
leaves much to be desired: As explained in the
opening paragraphs, it is quite possible that, even
though K~ becomes comparatively large, no true
critical point arises; if there is one, the pair
correlations must become negative in a peculiar
and, thus far, unobserved manner.

We are indebted to N. W. Ashcroft, R. J. Bax-
ter, S. M. Foiles, K. A. Green-Luks, D. Hender-
son, G. L. Jones, K. D. Luks, and B. Widom for
inf ormative discussions and correspondence. The
support of the National Science Foundation, in
part through the Materials Science Center at Cor-
nell University, is gratefully acknowledged as is
the award of a Chaim Weizmann postodoctoral
fellowship to one of us (S.F.)

'See J. A. Barker and D. Henderson, Rev. Mod. ' Phys.
48, 587 (1976), and references therein.

See, e.g. , M. E. Fisher, Rev. Mod. Phys. 46, 597
(1974), and references therein.

K. A. Green et al. , Phys. Rev. Lett. 42, 985 (1979),
and Phys. Rev. A 21, 356 (1980).

4G. L. Jones, J. J. Kozak, E. Lee, S. Fishman, and
M. E. Fisher, Phys. Rev. Lett. 46, 796, 1850(E) (1981).

Although, important aspects of our analysis can be
extended to potentials with power law decay: e.g. ,
S. Fishman, to be published.

Note that this explicitly rules out the possibility g
=4- d, left open for d & 4 in Ref. 3.

7G. L. Jones and K. A. Green-Luks, private communi-
cation.

S. Fishman and M. E. Fisher, to be published.
M. S. Green, J. Chem. Phys. 33, 1403 (1960).
M. I. Guerrero, G. Saville, and J. S. Rowlinson,

Mol. Phys. 29, 1941 (1975).
~'S. M. Foiles and N. W. Ashcroft, Cornell University

Materials Science Center Report No. 4378 (unpublished).
' M. E. Fisher and S. Fishman, to be published.
'3For simplicity we omit the various special considera-

tions, factors of 1/~ Inx~, etc , needed . at d =4.

423


