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Local Scalar Fields Equivalent to Nambu-Goto Strings
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We prove the mathematical equivalence of Nambu-Goto strings to local scalar fields
S(x) and T (x) described by the Lagrangian@= —Jd x([B(S,T)/B(x~, x, )l 2/2)' '. Implica-
tions to the quantization problem of strings are also discussed.

PACS numbers: 11.10.Ef, 11.10.Lm

Nambu-Goto string theory' was originally pro-
posed as a model of hadrons to give foundation to
the successful Veneziano amplitudes for meson-
meson scattering at low energies. ' In the past
ten years, quantum chromodynamics (QCD) has
emerged as a basic theory of strong interactions,
which forces us to explain how QCD is related to
the string model. One can argue that a bag pic-
ture, which reduces to the string picture in a cer-
tain limit, might emerge from QCD by taking ac-
count of special configurations of gauge fields. '
It is also possible to discuss conditions for mag-
netic superconductivity, expected to be a respon-
sible mechanism for electric string formation,
to show that a new kind of permeability in QCD
must vanish in the vacuum. In these approaches
QCD and the string model are rather indirectly
related to each other with only the common fea-
ture of the stringlike structure of hadrons. Re-
cently many attempts have been made to connect
QCD more directly with the Nambu-Goto strings.
For instance, it has been argued that a path-
ordered phase factor in QCD obeys an equation
of motion quite similar to that in the string model. '
Another link may be found by showing that the
string model is equivalent to a nonlinear Abelian
gauge theory of a certain kind, which realizes
some of the important properties of QCD. ' ' Our
approach is similar to the last one. We shall
prove mathematical equivalence of the string
model to a local nonlinear scalar field theory, to
which QCD is supposed to eventually reduce at
low energies.

Nambu-Goto strings x„(~,v) are described by
the action

I„„„g=- (2'n') 'fd'dv (-u„,'/2)'",

To establish a relation between strings and scalar
fields we need to consider a family of solutions'
to (3) parametrized by (S,T) such that x„(T,v; S,T)
sweeps a four-dimensional domain 0 in the
Minkowski space-time when (v', o', S,T) covers a
domain O'. Tbe induced mapping (~, o; S,T) -x„
yields an identity

up. =X '~p. =X 'H&p. p~&"), (5)

e(S,T) 8(~, v, S,T)

~ Ppvkpg

'FP (Ppv, X+Pva, p+Pap, v) 'YP
1 PA. pX

=-f.gP'", , +-.'»(Op J'"')

Here we have regarded 7, 0 f Sp and + as functions
of a space-time point x in ~. We now demonstrate
that tbe string theory (l) is equivalent at the clas-
sical level to a theory of local scalar fields S(')
and T(x') with the action

Iscalar fields f~ X ()i'p v /2) (7)

To see this, first note that p» in (4) may be
written with the aid of (5) as

p„,= (2"n ) 'W„„/(W2/2)'".

Since P„, may be viewed as a function of x de-
fined in , we can rewrite the equation of motion
(3) as

b",.f'. .)=b",x'3O„,.
=2"n'(-u'/2)'"p" p =0

Here p„, &=9+„„.Furthermore, as

u„,=(x„,x„)=8('„,x,)/e(T, (x),

which gives the equation of motion

~Is tri ng Utf f

du 2nn' (-u'/2)'" '

(2)

(3)

and P„,'=const, the equation of motion is cast
into

Pvt 0 p -o.—
X.p

Substituting (8) into (9), we obtain

W„e~(W'P/(W2/2)"2j =0,
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which gives

8 SB jW""/(W /2)' )=0,
8 T 8 (W" '/(W'/2)"'j =0.

(10a)

(10b)

(Here we have assumed that u' &0 and W' &0 ex-
cept at singularities or boundaries. ) Equations
(10a) and (10b) are exactly the equations of mo-
tion derived from the action (7) by taking varia-
tion over S and 1'. That is, a family of minimal
surfaces described by (1) has one-to-one corre-
spondence with a configuration of classical scalar
fields described by (7).

Correspondence between strings and local field
theories has been previously investigated by sev-
eral authors. Nielsen and Olesen' have stated
that Nambu-Goto strings have close resemblance
to an Abelian gauge theory with the Lagrangian
—(F2/4}' 2 (F„,=B„A,—B„A„),which yields equa-
tions of motion

8,(F"'/(F'/4)"') =0.

x, =7, x, =d cos(~I +6) sin(IIv/L),

x, =d sin((u~ +6) sin(II(x/L), x, =~, (17)

d'=(u '- (L/II)'

Solutions are parametrized by d ' and 5. The cor-
responding solutions in the scalar field theory

H = Jd x ((II ~VS + II~VT) +(VS) (VT) —(VSVT)2j' 2,

which is positive def inite. Canonical equations

S(x) = 6H/6II ~(x),

II~(x) = —6H/6S(x), etc. ,

reproduce (10a) and (10b).
Some examples are in order. First consider

spinning strings (rotating bars) described by

xo =I
~ xI = cos((d'T + 6)f(o'),

x2 = sin(Id 7 + 6)f((I) ~ x~ =8
~

(d = const

with f (0) =-&u ' and f(II) =&a '. Clearly the family
of the solutions is parametrized by z and &. By
introducing a cylindrical coordinate system
(t, I', p, z) we can immediately write the corre-
sponding solution in the scalar field theory (7):

S(x) =z, T(x) =q —&ut.

It is easy to see that (16) indeed satisfies (10).
Another example is a rotating bow with its two

ends kept fixed, namely"

The system (7) can be partially regarded as Niel-
sen and Olesen's gauge theory by identifying A. „
=SB„T, but, in view of (10a) and (10b), Eq. (11)
is too restrictive to describe general motion of
strings. On the other hand, Nambu' ' and Rinke'
have tried to find a relation between gauge fields
and strings in the form F„,=kv„„or ~p„„which
sometimes fails to hold as p

" „&0 in general
In other words, the 'equation of motion requires
only Eq. (9), but not p

" „=0.
It might be worth noting that the equation of

motion for strings, (9), can be interpreted, on
identifying p„„=F„„asimplying vanishing
Lorentz force for electric charges.

It is easy to rewrite the nonlinear scalar field
theory (7) in the canonical form. In terms of mo-
menta conjugate to S(x) and T(x)

II~ =(W /2) ' VT(SVT —TVS),

11,=- (W'/2)-'"VS(SVT —TVS),

the Hamiltonian is given by

(12)

are, in the cylindrical coordinates,

S =d ' =I. ' sin(IIz/L), T = 6 = y —~t,

sin(II z/L)
[I"'+(L/II)' sin'(IIz/L)]"' '

Rather lengthy calculations confirm that (18)
really satisfies (10). Note also that 8 "p„„&0in
this example.

The equivalence of the string theory to the
scalar field theory reminds us of the Hamilton-
Jacobi formalism for point particles, in which a
free point particle is described by a field equation
(BS)'+m' =0. In fact, Eguchi" has proposed an
equation for a string of this sort in which an area
swept by the string plays a role of an evolution
parameter, in a quite analogous way as the time
variable t does in point particle mechanics. On
the other hand, Nambu' has proposed a Hamilton-
Jacobi-type formalism for strings where two
evolution parameters & and 0 are treated on an
equal footing. In his scheme, string dynamics is
described by a first-order partial differential
equation for two kinds of scalar fields defined in
the six-dimensional manifold (x„,~, a). In spite
of considerable similarity of our Eqs. (10) to the
Hamilton- Jacobi equation in point particle me-
chanics, there is a crucial difference between
them, in that Eqs. (10) are second-order partial
diff erential equations.
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Our discussions above are entirely classical.
One may now deal with the quantization problem
of strings by pushing forward the analogy to the
Hamilton- Jacobi equations further. It is well
known that quantum theory carries dual pictures,
namely, the particle and wave pictures. In the
point-particle case the Hamilton- Jacobi equation
(9S)'+nz' =0, which determines trajectories of a
particle, is obtained from the Klein-Gordon wave
equation (@'Bs-m') =0 in the @-0 limit by identi-
fying p =a exp(- iS/5). In a parallel way one can
ask what a wave equation for strings is which
yields classical string equations (10) in the It - 0
limit. The answer is quite simple. Consider two
kinds of complex scalar fields g(x) and g(x) de-
scribed by the Lagrangian

2 =(Z„, Z" '/(g g $ ((')J
'

Z""=&(g, k)/&4~, ~.).
Equations of motion are

(19)

Z"'9 g" Zg~gp~y 2g~

Z" 'O, o~
P ggTg 7 2yT

By making an Ansatz that the wave functions 0 and

P in an almost classical physical system have the
form

g =u exp(iS/h), g =v exp(iT/@), (21)

we can ascertain that Eqs. (20) reduce to Eqs. (10)
to the leading order in h, namely to 0(h '). INote
that terms of 0(@ ') cancel each other out. ]

S(r) and T(r) are phases of g(r) and (t(r). This
interpretation is quite reasonable in view of the
character of multivaluedness of the solutions (16)
and (18). By requiring g and y to be single-valued

functions of x, we have, for instance, a solution

S(x) =n@s, T(r) =nh(p —(ut) (n =1,2, .. .). (22)

The meaning of the quantization condition in (22)
remains to be investigated further.
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