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We prove the mathematical equivalence of Nambu-Goto strings to local scalar fields
S(x) and T (x) described by the Lagrangian &= - Jd'x {10(5,7)/8(x,, x,)1%/2}!/% Implica-
tions to the quantization problem of strings are also discussed.

PACS numbers: 11.10.Ef, 11.10.Lm

Nambu-Goto string theory' was originally pro-
posed as a model of hadrons to give foundation to
the successful Veneziano amplitudes for meson-
meson scattering at low energies.? In the past
ten years, quantum chromodynamics (QCD) has
emerged as a basic theory of strong interactions,
which forces us to explain how QCD is related to
the string model. One can argue that a bag pic-
ture, which reduces to the string picture in a cer-
tain limit, might emerge from QCD by taking ac-
count of special configurations of gauge fields.?
It is also possible to discuss conditions for mag-
netic superconductivity, expected to be a respon-
sible mechanism for electric string formation,
to show that a new kind of permeability in QCD
must vanish in the vacuum.* In these approaches
QCD and the string model are rather indirectly
related to each other with only the common fea-
ture of the stringlike structure of hadrons. Re-
cently many attempts have been made to connect
QCD more directly with the Nambu-Goto strings.
For instance, it has been argued that a path-
ordered phase factor in QCD obeys an equation

of motion quite similar to that in the string model.®

Another link may be found by showing that the
string model is equivalent to a nonlinear Abelian
gauge theory of a certain kind, which realizes
some of the important properties of QCD.*® Our
approach is similar to the last one. We shall
prove mathematical equivalence of the string
model to a local nonlinear scalar field theory, to
which QCD is supposed to eventually reduce at
low energies.

Nambu-Goto strings x,(7,0) are described by
the action

Litring== @ra’) tfdrdo (=v,,2/2)"2, (1)

v“,,={xu,x,,}=8(x“,x,,)/3(‘r,0), (2)
which gives the equation of motion

{x“,p,, v}=0a (3)
_6Istr1'ng__ 1 Uuu .

Puv= ovy, 2ma’ (=v3/2)Y2° @)

To establish a relation between strings and scalar
fields we need to consider a family of solutions®
to (3) parametrized by (S,T) such that x,(r,0;S,T)
sweeps a four-dimensional domain & in the
Minkowski space-time when (7,0;S,T) covers a
domain Q’. The induced mapping (7,0;S,T)—~x,
yields an identity

Uuy=X~1Wuv=X-1('§'€uvp)\pr)y (5)

a(r,0,S,T)

a(s,T)
W, ,= 2 = .
X a(xo;xlyxz,xs)

uy"a(xu’xU)s

(6)

Here we have regarded 7, o, S, and T as functions
of a space-time point x in 2. We now demonstrate
that the string theory (1) is equivalent at the clas-
sical level to a theory of local scalar fields S(x)
and T (x) with the action

Iscatar fields == fd4x (Wu y2/2)1/2. (7)

To see this, first note that p,, in (4) may be
written with the aid of (5) as

buv=@rar) W, ,/(W2/2)V2, (8)

Since p,, may be viewed as a function of x de-
fined in €, we can rewrite the equation of motion
(3) as

{Xu,.bu v}={xu ,x)\}f)p 20N
=21a’(-v2/2)Y%p"p,, \ =0.

Here p,, »=0)pyy. Furthermore, as
HU, A H
A
" buua

=5p" Mpy voatD o, utbou,u)— 2" Moaw,w
="p~v)\ﬁ>\“,u +7}3V(PuuP“)\)

and p, ,®>=const, the equation of motion is cast
into

Burd™ =0, 9
Substituting (8) into (9), we obtain
Wy ou{w ™/ (w2/2)V2 =0,
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which gives
9 uS 9 V{Wp U/(Wz/z)llz} =0:
8,7 AW" "/ (W?/2)'?} =0.

(Here we have assumed that »2#0 and W2#0 ex-
cept at singularities or boundaries.) Equations
(10a) and (10b) are exactly the equations of mo-
tion derived from the action (7) by taking varia-
tion over S and T'. That is, a family of minimal
surfaces described by (1) has one-to-one corre-
spondence with a configuration of classical scalar
fields described by (7).

Correspondence between strings and local field
theories has been previously investigated by sev-
eral authors. Nielsen and Olesen® have stated
that Nambu-Goto strings have close resemblance
to an Abelian gauge theory with the Lagrangian
- (F?/4)Y2 (F,,=0,A,-08,A,), which yields equa-
tions of motion

o, {F**/(F%/4)'%} =0,

(10a)
(10b)

(11) |

H= [d%{(3VS +11,VT)? +(VS)3(VT)? - (VSVT)?}"'2,

which is positive definite. Canonical equations
() =0H /51 5(x),
I (x) =—6H/8S(x), etc.,

reproduce (10a) and (10b).
Some examples are in order. First consider
spinning strings (rotating bars) described by

14)

Xo=T, x,=cos(wT +6)f(0), (
15

x, =sin(wT +8)f(0), x3=2, w=const )
with £ (0) == w™! and f(ﬂ_) =w™!, Clearly the family
of the solutions is parametrized by z and 6. By
introducing a cylindrical coordinate system
¢,7,9,z) we can immediately write the corre-
sponding solution in the scalar field theory (7):

Sk) =z, T)=¢-wl. (16)

It is easy to see that (16) indeed satisfies (10).
Another example is a rotating bow with its two
ends kept fixed, namely'®

Xo=T, x,=dcos(wT +0)sin(ro/L),
%, =d sin(wT +0) sin(mo/L), x,=0, %))

d?=w2~(L/1)2.

Solutions are parametrized by d”*! and 6. The cor-
responding solutions in the scalar field theory

400

The system (7) can be partially regarded as Niel-
sen and Olesen’s gauge theory by identifying 4,
=88,T, but, in view of (10a) and (10b), Eq. (11)
is too restrictive to describe general motion of
strings. On the other hand, Nambu” ® and Rinke®
have tried to find a relation between gauge fields
and strings in the form F,,=xv,,, or Ap,,, which
sometimes fails to hold as 5™ ,#0 in general.

In other words, the equation of motion requires
only Eg. (9), but not p™ ,=0.

It might be worth noting that the equation of
motion for strings, (9), can be interpreted, on
identifying ,,=F,,, as implying vanishing
Lorentz force for electric charges.

It is easy to rewrite the nonlinear scalar field
theory (7) in the canonical form. In terms of mo-
menta conjugate to S(x) and 7T (x)

g =(W2/2)" Y2vT $VT - TVS),

. A (12)
I, =- (W?/2)"Y2vS8vT - TvS),
the Hamiltonian is given by
(13)
‘ are, in the cylindrical coordinates,
S=d"'=r"tgin(mz/L), T=56=¢ ~wt,
(18)

sin(mz/L)
[»2 + (L/7)2 sin?(mz/L) 2 *

Rather lengthy calculations confirm that (18)
really satisfies (10). Note also that 8*p,, #0 in
this example.

The equivalence of the string theory to the
scalar field theory reminds us of the Hamilton-
Jacobi formalism for point particles, in which a
free point particle is described by a field equation
(6S)? +m?=0. Infact, Eguchi** has proposed an
equation for a string of this sort in which an area
swept by the string plays a role of an evolution
parameter, in a quite analogous way as the time
variable / does in point particle mechanics. On
the other hand, Nambu’ has proposed a Hamilton-
Jacobi-type formalism for strings where two
evolution parameters 7 and o are treated on an
equal footing. In his scheme, string dynamics is
described by a first-order partial differential
equation for two kinds of scalar fields defined in
the six-dimensional manifold (x,,7,0). In spite
of considerable similarity of our Egs. (10) to the
Hamilton-Jacobi equation in point particle me-
chanics, there is a crucial difference between
them, in that Eqs. (10) are second-order partial
differential equations.
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Our discussions above are entirely classical.
One may now deal with the quantization problem
of strings by pushing forward the analogy to the
Hamilton-Jacobi equations further. It is well
known that quantum theory carries dual pictures,
namely, the particle and wave pictures. In the
point-particle case the Hamilton-Jacobi equation
(8S)? +m? =0, which determines trajectories of a
particle, is obtained from the Klein-Gordon wave
equation (%262 —m2) =0 in the % — 0 limit by identi-
fying ¢ =a exp(—-iS/). In a parallel way one can
ask what a wave equation for strings is which
yields classical string equations (10) in the 7Z -0
limit. The answer is quite simple. Consider two
kinds of complex scalar fields 6(x) and ¥(x) de-
scribed by the Lagrangian

£={z,,72"" /(6 oy y)} /2,

(19)
Z"=3(0,9)/0 0 y,x,).
Equations of motion are
5 ZFa Tl £ 0
M EaToyTe( T 20T T2
' (20)

o 42"70,0" I
MLoTagTy( " 29T ¢

By making an Ansatz that the wave functions 6 and
¥ in an almost classical physical system have the
form

0 =u exp(iS/1), ¢ =v exp(iT/n), (21)

we can ascertain that Eqs. (20) reduce to Egs. (10)
to the leading order in 7, namely to O(7™1). [Note
that terms of O(%”2) cancel each other out.]

S(x) and T (x) are phases of 8(x) and ¥(x). This
interpretation is quite reasonable in view of the
character of multivaluedness of the solutions (16)
and (18). By requiring 6 and ¢ to be single-valued

functions of ¥, we have, for instance, a solution
S()=nfiz, T)=nki(p-wt) R=1,2,...). (22)

The meaning of the quantization condition in (22)
remains to be investigated further.
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