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We propose that the cohesive energies of simple metals can be accurately predicted
solely from atomic kinetic energy terms. In this fashion, we are able to determine the
cohesive energy of twenty simple metals to an accuracy better than 15%0. Moreover, we
are able to quantify orbital contributions to cohesion.
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One of the outstanding problems in local density
theory is the role that inhomogeneous or gradient
kinetic energy terms play in the cohesion of con-
densed matter. In a fundamental theorem on lo-
cal energy density functionals, Teller' has as-
serted that density expressions without inhomo-
geneous corrections will lead to an unbound solu-
tion for an arbitrary diatomic molecule. Teller' s
theorem has been extended' to include systems
comprised of an arbitrary number of atoms.
Hence, it must apply to solids. Naturally, such
a theorem is a devastating indictment of Thomas-
Fermi models of cohesion as it declares that
"Thomas-Fermi" matter will not exist in a bound
state. Significantly, Teller's theorem does not
apply to a local density description of condensed
matter provided gradient kinetic energy terms
are included. Both from a formal point of view'
and from a computational point of view~ it has
been demonstrated that reasonable, i.e., bound
solutions can be obtained with inhomogeneous

terms in the kinetic energy functional. Here we
extend Teller's theorem by stating that cohesion
in the specific case of simple metals arises en-
tirely from the inhomogeneous kinetic energy ex-
pressions. We concentrate on simple metals be-
cause they appear to represent the family of sol-
ids best described by the Thomas-Fermi model.

We start by writing the total "homogeneous"
energy, E„,of an arbitrary system as E„[n]
= Tz[n]+V[n], where T„represents the homo-
geneous kinetic energy term (Thomas-Fermi
term), V represents the total potential energy
contribution including exchange and correlation,
and n is the ground-state charge-density config-
uration. ' With this notation, Teller's theorem
may be expressed as E„t,=E„[n,] -E„[n] ~ 0,
where n, is the atomic charge density and n is
the metallic charge density. Actually, we know
that E„[n] =E„[n,] is always possible as we may
separate the "metal" into atoms which are infi-
nitely far apart. In practice, we find that E„[n]
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departs only weakly from E„[n,] when we use the
metallic density appropriate for a realistic den-
sity for the atom and the metal. 4

If we include an inhomogeneous kinetic energy
term, ' T;[n], in our energy functional then the
total energy may be written as

Z,.[n] =T „[n]+T,.[~]+ I [n]
and the cohesive energy of the system as

z „=z,[n.]-z,[n. ]
=T, [n, ] —T; [n ]+(E„[n,j —E„[n„]).(2)

The crux of our argument resides within Eq. (2).
Suppose that even in the presence of inhomogen-
eous terms, Teller's theorem still applies. By
direct computation for simple metals, ' we find
the theorem does apply quite accurately and in
the limit of vanishingly small gradient terms we
know it must hold. If we assume E„[n,]=E„[n],
then we find

z,.h
=- T, [n, ] —T, [n ]. (3)

Unfortunately, Eq. (3), while possibly intriguing
and certainly simple, is not an obvious reduction
of the cohesion problem. First, we must know

the correct metallic ground state before we can
apply (3) and second, we must know the precise
form of the inhomogeneous correction. For sim-
ple metals, the former requirement is not diffi-
cult to satisfy. Physically, we know that the core
regions are not strongly involved in chemical
bonding. We divide up the inhomogeneous terms
to the kinetic energy into core, T, and valence,
7',.", contributions:

&noh

—= (T,"[n.] —T,"[~.])+(T,'[n, ] —T,'[n.]). (4)

We now assert T, '[n, ] =—T,'[n„jand T;"[n„]
«T;"[n,]. T [n, ]=T,'[n ] since we do not
expect the core regions to be altered in passing
from the atom to the metal. The inequality
T;"[n ] «T;"[n, ] has long been established for
simple metals by signer and Seitz. ' Via this
line of reasoning, we have arrived at the result
E„&= T;"[n,]. However, unless we know the
form of the inhomogeneous kinetic energy term
we still have not arrived at an operationally use-
ful expression. We avoid this problem by noting
that the inhomogeneous term can be defined
formally as the difference between the quantum
mechanical, T„andThomas-Fermi kinetic en-
ergy, T„,terms. Thus we may write

&coh —= T, "[&.]-T~ "[&.]

where in atomic units

and y, is the atomic valence wave function. ' The
sums are over the occupied states. R, is the
core radius. Obviously the choice of R, is some-
what arbitrary. However, we can provide a pre-
scription for its definition. We choose A, to be
the position of the wave-function maximum out-
side the outermost node of the most loosely bound
valence level. For a different choice of A, we ex-
pect a corr elation of E„bwith T, "- T„";however,
the equality of Eq. (5) need not hold.

Before examining the accuracy of the cohesive
energy expression, we should discuss the physical
meaning of Eq. (5) and the validity of some of our
approximations. In essence, we assert that the
cohesive energy of simple metals is related di-
rectly to the deviation of the atomic quantum
mechanical kinetic energy, in the wave-function
tail region, from the atomic Thomas-Fermi
kinetic energy. This assertion follows from
Teller's theorem. ' If both the atom and the metal
were true Thomas-Fermi systems, then accord-
ing to Teller's theorem no cohesion would occur.
If the simple metallic state, as we argue, is to
a first approximation a Thomas-Fermi system,
then the deviation of the quantum mechanical
kinetic energy from the Thomas-Fermi kinetic
energy in the atomic state is a measure of the
cohesive energy of the bulk metal. If we examine
an archetypical simple metal such as sodium, we
find that the charge density is nearly constant
over -90% of the Wigner-Seitz. cell. ' In addition,
the metallic density does not significantly deviate
from the atomic density inside the core region
(the core-region-valence-region separation oc-
curring at the atomic wave-function maximum).
The central point is that a simple metal such as
sodium exists with respect to its valence proper-
ties as a "true" Thomas-Fermi system; i.e., in-
homogeneous kinetic energy terms are negligible.

In Fig. 1 we illustrate the calculated cohesive
energy for twenty simple metals. Despite some
obvious simplifications which we have employed
to arrive at Eq. (5), the overall correlation is
striking. Our accuracy is better than 15~/0, the
best &»astro calculations for simple metals are
accurate to about 10%." We note that certain
tetravalent elements, e.g. , Ge, Sn, and Pb,
probably should not be included in our discussion.
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FIG. 1. Experimental cohesive energies (Ref. 9) com-
pared with the theoretically predicted values. The theo-
retical values have been determined from a kinetic
energy" rule, Eq. (6). In certain cases, nonlocal or
orbital contributions to cohesion are important, e.g. ,

Zn, Cd, and Hg. For these cases, we have corrected
the cohesive energies using Eq. (6) as outlined in the
text. The open circles indicate the predicted cohesive
energies with no corrections; the solid circles indicate
the cohesive energies with the nonlocal corrections.

One might wonder why Ge works at all and, in
particular, why it is predicted to have a higher
cohesive energy than experiment. We might ex-
pect that, if Eq. (5) really works, it should con-
tain only metallic contributions and it should omit
covalent forces which would add to the cohesion
of Ge. We believe the answer to the Ge problem
resides in our definition of the core region. From
previous work4 we know that the deviation of
metallic densities from atomic densities for poly-
valent metals, as contrasted with monovalent
metals, is pushed out toward the cell boundary.
For our purposes we have arbitrarily fixed the
core region at the wave-function maximum. To
do otherwise we would not be able to establish an
unequivocal verification of Eq. (5). In any event,
we feel that our core region is too small for Ge
and this accounts for its fortuitous placement.

One obvious deficiency of all discussions of
cohesion in terms of atomic ground-state proper-
ties is the exclusion of orbital corrections in
passing from the atom to the metal. Consider the
atomic valence levels of Li and Na. The energy
levels of the 2s and 3s orbitals for Li and Na,
respectively, are within 0.005 Ry of one another
and the charge densities of these orbitals are
nearly identical. Yet Li has a cohesive energy
which exceeds Na by 50%%uo.

' To understand differ-
ences between Li and Na we must explore the
excited-state atomic spectrum. Here Li and Na
differ dramatically. Within the framework of
pseudopotential theory, we expect a very attrac-
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FIG. 2. Pseudopotentials for Li and Na: (a) s poten-
tials and (b) p potentials. The Li p potential is dramati-
cally different from the Na p potential. We attribute
the strong differences in the ground-state properties of
Li and Na to this fact. Note the change of scale from
(a) to (b).

tive p-state potential for Li, but not for Na. One
may attribute the differences between Na and Li
to the lack of occupied p states in Li. Since p
states in Li need not be orthogonal to core states,
Li valence electrons in p states need not experi-
ence an effective repulsive potential from ortho-
gonality requirements. The situation is indicated
in Fig. 2. We display the s and p potentials for
Li and Na. " While the s potentials differ only
slightly in the core region, the p potential differ-
ence is dramatic.

In addition to s-p nonlocality in the first-row
elements, we expect s-d nonlocality to become
significant when d orbitals, either occupied or
empty in the atomic state, reside close in energy
to occupied atomic s states. Examples of this
effect should be present in Ca and Zn. In Ca the
empty 3d level lies very close to the occupied 4s
state. When we pass from the atom to the metal
we expect s-d mixing to occur and to contribute
to cohesion. This effect is significant; Moriarty"
has estimated it to be -30%%uo of the total cohesive
energy.

In Fig. 1 we find evidence for the neglect of
orbital contributions. For the s-p problem (Li
and Be) we find that we underestimate cohesion
using Eq. (5). Likewise for the heavy alkaline
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earths, we predict a lower cohesive energy than
observed. For the case of Zn, Cd, and Hg the
effect is spectacular. We do not include the re-
pulsive effect of the filled d shell in Eq. (5) and,
as a consequence, results based only on Eq. (5)
overestimate cohesive energies by nearly a fac-

~N „=[ 6~(2l + I)/0, ]f dr r'S V N „(r)([j,(0, r) ]'

where ~, is the atomic volume, k F is the free-
electron Fermi wave vector, j, is a spherical
Bessel function, " and l = I (l = 2) for an s-p (s-d)
correction. AVAIL is the difference in the orbital
components of the pseudopotential. " For exam-
ple, in Zn we would take the difference between
the 4d and 4s pseudopotentials to form AVNL. In
this fashion, we have examined eight simple
metals in which s-p or s-d corrections may play
a significant role (Li, Be, Ca, Sr, Ba, Zn, Cd,
and Hg). In each case, we find improvement in
our cohesive energy based on Eq. (5). This re-
sult tends to confirm the essence of Eq. (5) and

the concept of orbital contributions to cohesion.
In summary, we note that Teller's theorem

may have implications for cohesion which have
not been fully explored. Here we have demon-
strated that cohesion in simple metals can be
understood through a "kinetic energy" rule, Eq.
(5), which appears to follow directly from Teller' s
work. Moreover, discrepancies between the
cohesive energies predicted from our rule and
the observed cohesive energies can be attributed
to orbital effects.
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