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function sample the magnitude and even the sign
of the polarj. zation are different. This is due to
those photoexcited electrons whose final-state
energy lies between the vacuum levels of the two
samples: only in case of the lower work function
do they contribute to the photocurrent, thereby
affecting the ESP. The interpretation of the mag-
r~itude of the polarization requires a quantitative
comparison with calculated spectra and is not at-
tempted in this paper.

From the two spectra, the five interband ener-
gies shown in Fig. 3 are derived: transition Q6 7,
3.6 (3.8); b, „4.8 (5.2); c4 „5.8 (5.9); d, , „
6.9 (7.5); and e~ „7.6 (8.6). All values are giv-
en in eV, with the theoretical ones in parentheses.
The subscripts denote the bands involved in the
transition.

A surprising feature of the clean spectrum is
that the positive polarization is present right
from the photothreshold although according to the
band calculation the first interband transition
along A should occur only at 7.5 eV. We attribute
this to hole lifetime broadening: For the clean
sample the initial-state energies lie at the top of
the d-band density of states which is very large,
resulting in short hole lifetime.

The spin-polarized photoemission experiments
on gold exhibit the specific advantages of this
method: (1) increased resolution, typical for a
differential measurement as compared to an in-
tensity measurement, and (2) unambiguous as-
signment of the bands due to the sign of the final-

state polarization. Furthermore the restriction
of polarization to transitions at lines or points of
high symmetry selects automatically the most in-
teresting parts of the Brillouin zone. The experi-
ments show that optical orientation presents a
powerful and, in certain cases, even unique tool
for the investigation of the electronic structure
of solids.
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Hesults are presented and interpreted for the zero- and finite-temperature excitation
spectrum of ferromagnetic Ising-Heisenberg chains, as probed by dynamic form factors.
Finite-chain calculations demonstrate the occurrence of a thermally induced resonance
centered around zero frequency, and a broadening of the magnon and two-magnon bound-
state resonances at low T. The occurrence of bound states in the associated transitions
demonstrates the failure of finite-order magnon perturbation theory.

PACS numbers: 75.10.Hk, 75.10.Jm

The quantum and classical properties of one-
dimensional systems, including the thermodynam-
ics, the dynamics, and soliton aspects are sub-
jects of considerable renewed interest and activi-
ty. ' ' Nevertheless, the development is ham-

pered by lack of exact results for time-dependent
correlation functions and the associated dynamic
form factors, allowing unraveling of the excita-
tion spectrum, as probed by dynamic form fac-
tors, at finite temperature.
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In this Letter, we present and unravel the exci-
tation spectrum of finite spin- —,

' Ising-Heisenberg
chains at finite T. The Hamiltonian is

We consider the operators
S"

l

+ +
Si Si+1

where

S)+= S "+iS ~ .
E

(4)

Periodic boundary conditions are assumed, and

g varies between the Ising limit g= ~ and the
isotropic Heisenberg model g=.l.

The exact results for the stationary states and
the eigenvalue spectrum' ' reveal that magnon
and magnon bound states represent the elemen-
tary excitations of the system. Considerable
progress has also been made regarding the
thermodynamic properties. ' ' Moreover, by
using the equation-of-motion technique for Greens
functions, certain dynamic form factors def ined

by

S„„(q,(u) = —,
'

6[(u —(u, (q)], (6)

where the magnon frequency is given by

u&, (q) = J(1 —g 'cosq). (7)
Accordingly, the spectrum is exhausted by the
elementary excitation, the magnon. For S»(q, &u),

describing the fluctuations of two adjacent spin
deviations, we find

The associated dynamic form factors will be
labeled by S,„(q, J ) and S»(q, J22). Following
mortis, "these quantities can be calculated exact-
ly at T =0, by using the equation of motion of
the corresponding Green's function. We obtain

X 5(Q) (22 X' + (2J k) (2)

can be evaluated exactly at T=0." Here,
for

S„(q, ~) = [(u,(q)/J] 6[v) —(u, (q) ]

~ & ~,c (q) = 2J (1 —g ' cosq/2) .

(8)

A(q) =(1/vN) P,A, e '" (3)

Z is the partition function, A. the stationary states
with eigenvalue ~q, p= 1/k JJT, &u the frequency,
and q the wave number.

The two-magnon bound-state frequency is given
by

~,(q) = J(1 —g 'cos'q/2) . (10)

At and above J2J Bc(q), the bottom of the two-
magnon continuum, we find

2 cosq/2 2 B
vZ q ) 8 +J2(q'e'oqq/2)' —2+~iq J* '

where

([ J22 ~ B C(q) ] [~ TC(q)

wTc(q) =2J(1+g 'cos q/2).

(12)

Thus, the spectrum of S»(q, &u) exhibits a 5 peak
associated with the two-magnon bound state and

a two-magnon continuum resonance bounded by
the top [ &u Tc(q) ] and bottom [&u, c(q)] of the con-
tinuum. The resulting dispersion curves are
given in Fig. 1 for g '=0.13 and the Ising limit
g '=0. In the latter case, the spectrum becomes
particularly simple, because Eqs. (6), (8), and

(11) reduce, for g-~, to

S„„(q,&u) = —,'S»(q, m) = —,
'

6(&u —J),
so that the magnon and two-magnon bound state
become degenerate, and the weight of the two-
magnon continuum vanishes. For g '=0, this
degeneracy extends to all multimagnon bound
states, ' For q=0, it also occurs in the Heisen-
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I berg limit (g= 1), where according to Eqs. (7),
(9), and (10) the gaps vanish, because ~,(q=0)
= J2JBc(q=0) =~,(q =0) =0. These T =0 results
then reveal that S„(q, &u) probes the magnon,
while S»(q, ~) unravels the two-magnon bound
state and the two-magnon continuum.

At finite temperatures, however, the problem
becomes much more complicated because the
states (qJ.

l
with eigenvalue ~q, appearing in Eq.

(2), no longer include the ground state only. Ac-
cordingly, transitions between excited states will
give rise to additional contributions. To clarify
the detailed origin of this thermally induced
structure, we calculated S„„(q,~) and S»(q, ~)
numerically for finite chains subjected to period-
ic boundary conditions. Clearly, S(q, ~) will con-
sist of discrete lines whose height is calculated
on the basis of Eq. (2) by using the numerically
evaluated eigenvalues and eigenfunctions of X;" "
Comparison with the corresponding zero-tem-
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FIG. 1. Dispersion curves for g = 0.13. Solid line
with triangles, magnons; solid line with circles, two-
magnon bound state. The shaded area is the two-mag-
non continuum. The dashed line corresponds to the
Ising limit g= . Tri&&gles, circles, and squares de-
note magnons, two-magnon bound states, and two-
magnon continuum states, respectively, for N =8.
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FEG. 2. S» (q, u) for% = 8, T/J= 3, q =7I./2 and 7I,
with g = 0.13 and 0.8, respectively. The arrows mark
the magnon frequencies I. Eq. (7)] .

perature results [Eqs. (6), (8), and (11)J, indi-
cates that N =8 reproduces the resonance struc-
ture of the infinite system sufficiently well to
clarify its origin.

Figure 2 shows some results for S„,(q, ~) at
T/J= 3, belonging to the low-T regime, where
the spectra are still dominated by the resonance,
corresponding at T=0 to the creation of a magnon
[Eq.(6)]. Nevertheless, Fig. 2 clearly reveals
considerable thermally induced structure. The
"magnon" resonance adopts a finite width, and
the corresponding destruction peak and a central
peak (CP), clearly visible for g '= 0.13, and g '
=0.8 at q = r, appear. A detailed analysis of the
contributions to S„„(q,&u) [EIl. (2)] in terms of the
eigenstates and eigenvalues reveals that the dom-
inant thermally induced weight to the CP stems

from difference processes between two- and
three-magnon bound states, as well as between
two-magnon bound states and magnons. Moreover,
broadening of the magnon resonances involves
transitions between the two-magnon bound states
and the three-magnon continuum. These findings
lead to the important conclusion that finite-order
magnon perturbation theory cannot account for
the thermally induced features, because they in-
volve bound states, representing an infinite-
order phenomenon.

Some results for S»(q, &u) at T=0 and T/J= 3

are shown in Fig. 3. Comparison with the exact
T=0 results for N= ~ clearly reveals that 1V=8

is sufficient to elucidate the physical origin of the
resonances associated with an infinite system.
For g '=0.13, and T/J=g~ the spectra are dom-
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FIG. 3. S&&(q, ) for N=8, q=7t/2 and n. , with@ '=0.13 and 0.8, respectively. Downward-pointing arrows mark
the bound-state frequencies |Eq. (10)], and upward ones the bottom and top of the continuum lEqs. (9) and (13)] for
g = 0.8. Dashed lines: two-magnon continuum resonance at T = 0 and N = ~ [ Eq. (11)].
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inated by the resonance, corresponding at T=0
to the creation of a bound state [ED. (8)]. The
thermally induced structure leads to a broaden-
ing of the two-magnon bound-state resonance,
the corresponding destruction peak, and a CP.
The dominant contributions to this CP can be
traced back to difference processes between two-
magnon and four-magnon bound states, as well
as between magnons and three-magnon bound
states. Broadening of the bound-state resonance
is dominated by two-magnon bound state to mag-
non continuum and four-magnon bound state to
magnon-continuum transitions. At T =0, g '
=0.8, and q= &/2, the high-frequency tail of S»(q,
&v) is exhausted by the continuum contribution,
which vanishes at q= &. This trend is still seen
at T/J= s. The remaining structure and its inter-
pretation is very similar to that at g '=0.13,
with the important difference, however, that the
resonances are much broader. This effect mere-
ly reflects the more pronounced dispersion close
to the Heisenberg limit.

Calculations have also been performed for T/J
= f and 1, revealing that in both S„„(q,m) and

S»(q, &u), the CP grows faster than the magnon,
two-magnon bound state, and continuum reso-
nances with increasing temperature,

Summarizing, we have shown that the excita-
tion spectrum of the Ising-Heisenberg ferromag-
net becomes dramatically modified at finite tern-
perature. The most striking new feature is a
resonance centered around zero frequency in
S„„(q,&) and S»(q, v), associated with difference
processes between bound states, as well as be-
tween magnons and bound states. This CP grows
faster than the remaining structure with increas-
ing temperature. Moreover, the thermally in-
duced broadening of the magnon and the two-
magnon bound-state resonances was found to in-
volve bound states, too. Consequently, these
results clearly demonstrate the failure of finite-
order magnon perturbation theory. The Ising-
like ferromagnetic chains CoC1, ~ 2H, O" and
CoCl, 2NC, H, and the recent discovery of a
family of spin--,' Heisenberg chains" offer the
possibility of observing these thermally induced
phenomena experimentally.

We note that S„„(q,~) is related to the neutron-

scattering cross section, and S»(q, ~) might be
probed by light-scattering techniques. "

Finally, we note that our results, strictly valid
for s = —,

' only, remain qualitatively correct for
larger s values. In fact, the main physical con-
tent of Eqs. (8), (8), and (ll), predicting magnon,
two-magnon bound state, and continuum reso-
nances, simply follows from the classification
of the states according to the eigenvalues of the
spin deviation oper ator, n =N s +P,S,'. C onse-
quently, even the finite-T behavior will involve
the same transitions, giving rise to a thermally

'
induced structure, similar to that outlined above
for s = —,'. In this view, the classical limit of our
results will also clarify the relevance of the
envelope solitons associated with the classical
continuum version of the Ising-Heisenberg model. "
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