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Self-Consistent Reduction of the Spitzer-Harm Electron Thermal Heat Flux
in Steep Temperature Gradients in Laser-Produced Plasmas
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A simple self-consistent limitation of the anisotropic portion of the local electron
distribution function results in an order-of-magnitude reduction from the Spitzer-Harm
thermal heat flux in steep temperature gradients, in agreement with recent Fokker-
Planck simulations. A new upper bound derived for the local heat flux, substantially
lower than that given by a "free-streaming" limit, accounts for most of the "inhibition"
previously required in the interpretation of many experiments with high-power-laser-
produced plasma.

PACS numbers: 52.50Jm, 52.25Fi, 44.10.+i

Thermal conduction plays an important role in
the transport of energy in laser-fusion implo-
sions. The commonly used value of the thermal
conductivity was derived by Spitzer and Harm'
(S-H) assuming that the electron-ion collision
mean free path is much smaller than typical tem-
perature scale lengths. In plasmas produced by
high-power lasers this assumption fails because
of the short scale lengths and high temperatures
encountered near the heat front. To avoid non-
physical behavior, the upper limit to the heat
flux is often assumed to be the "free-streaming"
limit Q& =otn, kT(kT/rn)"', where n -0.65.' In-
terpretation of many experimental results sug-
gests, however, that a be smaller by about an
order of magnitude, ' ~ typically 0.03 ~ a & 0.1.
The use of such a small value of a, without a
physical basis, is unsatisfactory, and has led to
large uncertainties in target design and simula-
tion of experiments. Recent studies" suggest
that classical Coulomb collisions, and not anoma-
lous processes, are dominant in thermal electron
transport. A numerical solution' to the Fokker-
Planck equation on a static system indicates a
reduction of the thermal heat flux in steep tem-
perature gradients by roughly an order of mag-
nitude below that given by the S-H description.

In this Letter we present a simple extension to
the S-H theory by imposing a physically motiva-
ted limit on the anisotropic portion of the elec-
tron distribution function, resulting in a local
description of the electron thermal conduction in
steep temperature gradients. Although a unique
expression for the heat flux cannot be obtained
when there are both local and nonlocal contribu-
tions, ' ~ ' we show that the local contributions
account for most of the reduction in the heat flux
inferred from experimental evidence" "and
predicted by the Fokker-Planck simulation. ' Our
results are most applicable to collisional plas-

mas, such as present short-wavelength interac-
tion experiments, ' as opposed to hot-electron-
dominated experiments. These results are easily
incorporated into laser-fusion simulation codes,
whereas a Fokker-Planck treatment of thermal
electron transport in such codes would be pro-
hibitive.

We follow the derivation of the electron thermal
conductivity given by Spitzer and Harm, ' using for
simplicity the limit of high ionic charge (Z) in
which electron-ion (e-i) collisions are dominant.
To include correctly the electron-electron (e-e)
collision requires a numerical treatment of the
energy and momentum exchange terms. ' The e-e
collisions are approximated by correcting the e-
i collision mean free path by a factor Z/(Z + 1) to
include the e-e momentum exchange.

The Boltzmann equation describing the electron
distribution function, f (x, v, p, t), in a one-dimen-
sional planar plasma is given by

~8 ~8 ez
(

~8 & v~8) (-~e)

where x is the spatial coordinate, v the velocity,
and p= cos0, where 9 is the angle the velocity
makes with the x direction. E, e, and yg repre-
sent the electric field, and the charge and mass
of an electron, respectively. We approximate
the collision operator' as (f, —f )/v(v), where
7(v) =x( )/vv is the collision time and x(v) is the
mean free path at velocity v.

In the presence of small gradients we assume
that the distribution function f (x, v, tt, t) has a
weak angular dependence and can be expressed
by f (x,v, p, , t)=f, (x, v, t)+pf, (x,v, t), where f,
and f, represent the local isotropic and aniso-
tropic components, respectively. In the case of
thermal equilibrium f, is the local Maxwellian,
and an expression for f, can be obtained by taking
the first angular moment of Eq. (1). In the steady
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state f, is given by

(2)

~x( n )' (
u )* (3)

where we assume T decreases with increasing x
and L= (T/IdT-/dxl). Finally, tbe net heat flux,
Q, is defined by Q = (4wm/6) J,"v'f, dv =—f 0 Q (v )dv,
which upon substitution of Eq. (3), yields Four-
ier's law for heat conduction: Q = —z dT/dx,
where z is the S-H electron thermal conductivity
for high-Z plasmas.

From Eq. (3) it can be seen that f,/f, increases
with &gL and at some velocity, depending on xJ
L, becomes greater than unity. However, the
S-H diffusion description is not valid for f, f,
because the distribution function, f, becomes
negative for some p. ' Furthermore, for any
transport description the particle flux, fdic pf(p)
=f,/3, cannot exceed the free-streaming value

f„where p is the maximal average p, of

The electric field, E, is required to preserve
charge neutrality, which is equivalent to the zero-
current condition given by Z=(4ne/3)fo"v'f, dv =0.
E is obtained by substituting Eq. (2) into tbe J =0
condition. We assume Coulomb scattering: y(v)
=X,(v/v~)', where v~ is the thermal velocity
(2kT/m)"', and X, is the total scattering mean
free path for 90 scattering by multiple collisions
at kT (Xo= (kT)'/[nn, (Z +1)e lnA] j.' Using these
assumptions in Eq. (2) yields for the ratio f,/f,

the distribution function. For a half-isotropic
distribution streaming into a vacuum, p =0.25,
resulting in f,~ 0.75f,. At those velocities for
f, ~f„the S-H heat flux, Q(v), becomes unphys-
ically large, independent of the assumed trans-
port treatment.

In the present work no attempt has been made
to solve the transport equation in order to ob-
tain the actual f, (v). However, a technique" to
extend the validity of the diffusion approximation
to the range of steep gradients is to physically
limit f,(v) to its upper value f, (v) which should
be close to f,(v). By applying this procedure to
the S-H diffusion formulation, one obtains an
(approximate) extension of the S-H local descrip-
tion to estimate the heat flux in steep tempera-
ture gradients. Flux limiting f, before calcu-
lating the integrated Q is the proper and physical
way of applying this technique, in contrast with
the commonly used free-streaming estimate ob-
tained by limiting the integrated Q. In order to
calculate the maximum local heat flux we choose
f, to be the local Maxwellian f,(v). This as-
sumption is approximately justified for a colli-
sional plasma, where the gradients are not too
steep (xJL s 0.1; see the later discussion of
Fig. 2). For steeper gradients, ' the nonlocal con-
tributions due to collisionless electrons will
dominate the heat flow and the present local
theory is not adequate. In order to carry out this
limiting procedure self-consistently, we proceed
as follows: (i) Let f» =min[f, (v),f, (v)], where
f,(v) is given by Eq. (2). (ii) Substitute f » (v) in-
to the J= 0 condition to yield an expression for
the electric field E:

8, ", e ",X(v) 8.E= — dvv g(v) + dve f, — duo
m p 0 Bv-

C

where v, is the velocity above which f, is limited
to f, . (iii) Finally, the self-consistency of tbe
process is completed by requiring that v, satisfy
the condition f,(v, ) =f, (v, ), when the above ex-
pression for E is substituted into Eq. (2) for f,.
Having determined v, (and therefore E), the self-
consistent flux-limited f„(v) gives the new upper
bound for the net heat flux. We note that using a
limited f„,without self-consistently determining
E, results in nonzero currents, and for Z,/L
a 0.05, negative net Q's.

The results of the above treatment are com-
pared to S-H theory in Fig. 1. Spitzer-Harm
theory predicts that the bulk of the energy is
carried by electrons with velocity between 2v, „
and 3.5v, ~. In Fig. 1(a), XJL =0.002, where S-H

! theory is expected to be accurate, f, exceeds its
maximum value only at v ~ 3v, h, and, since Q is
insensitive to Q(v) in this range, the flux-limiting
procedure does not significantly change Q from
the S-H heat flux for this small y JL. In con-
trast, note that for X,/L = 0.1 [Fig. 1(b)], which
violates the assumptions of S-H theory as illu-
strated by f, which exceeds f, near v = 2v, „, limit-
ing f, sharply reduces the heat flux Q(v). Limit-
ing the positive portion of f, also results in a sub-
stantial reduction in the return current needed to
preserve neutrality, and hence a reduction in the
required E.

The reduction of the heat flux below the S-H
value is illustrated in Fig. 2 as a function ygL.

248



VOLUME 47, NUMBER 4 PHYSICAL RKVIKW LKTTKRS 27 Jur.v 1981

Cl

2.0

0.0

I j
I

I
I
I
I

I
l

b
I
I

I
t
I

I

I

I

I

I

I
I

— 2.0

1.0

0.8

-1.0- 1.0

Q
0.0

x 0.6

Q

0.4

I I I I I -).0
0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0

0.2

FIG. 1. Spitzer-Harm (dashed curves) and self-
consistent flux-limited (solid curves) particle flux,

f&/fo, and heat flux, Q(v) (in relative units), for
(a) A. o/L =0.002, and (b) 10/L =0.1. The maximum ab-
solute value of Q(&) illustrated in (a) is 0.02 of the value
in (b).

%e choose 8=4 for comparison with Ref. 5,
and the e-e contribution to a was included by
using the 5r of Ref. 1 (for Z=4, br-0. 5}. The
plotted range of pe extends from 10 ~, where
S-H theory applies, to unity, where nonlocal
transport effects dominate. Curve I shows the
reduction obtained from the self-consistent treat-
ment when f, is limited to its maximum physical
value f,. This limitation represents a new upper
limit to the local heat flux, which is substantially
lower than the free-streaming flux (Q& with a
=0.65, curve II). Note that the upper bound ob-
tained agrees with the numerical results (the
points plotted were obtained from Ref. 5) for the
heat fluxes to within a factor of 2 or better over
the entire. range 0.004 & X.,/L & 0.1. For more
collisionless plasmas, e.g. , those dominated by
hot electrons' gJL ~ 0.1), the present theory
must be modified to include deviations of the iso-
tropic portion of the distribution, f„from a
local Maxwellian prescription.

To obtain the correct net heat flux as a function
of x,/L the actual dependence of f, on v must be
obtained Intu. itively one expects f, to make a
smooth transition to an upper limit (f, ), some-
what below f„resulting in a further reduction
of the net heat flux. To estimate this effect in
analogy with techniques often employed in trans-
port calculations" the transition of f, to its max-
imum value (f, ) is obtained by use of a "har-
monic" mean, f»=(f, '+f, ') '. (This pro-
cedure requires a numerical search for E.)
Curve III (Fig. 2) shows the results obtained by

10 3 10 2
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FIG. 2. Reduction of Spitzer-Harm electron thermal
Qux as a function of ~p/I. for Z = 4; Curve I, self-
consistent limitation (f &

~f0) with a sharp cutoff (see
Fig. 1); Curve II, free-streaming net Qux limitation
(n = 0.65) with a sharp cutoff; Curve 111, same as 1 with

f, & 0.75f0 with a harmonic cutoff; Curve IV, same as
II with o. = 0.06 and a harmonic cutoff; and curve V,
same as IV with a sharp cutoff. The shaded region is
bounded by 0.03 & o - 0.1 using a harmonic cutoff. The
solid tri~~gles are the results from Ref. 5. Note that
the X of Ref. 5 defined at 2& corresponds to 2,25&p

here.

this method for f, =0.75f,. A choice of f, be-
tween 0.5f, and f, is not crucial since Q varies
only by 10-25% over this range of f, . The re-
sult of this local treatment (curve III) yields an
order of magnitude reduction in the heat flux, in
the range 0;03 & yJL & 0.1, which is typical of
the conditions at the top of the heat front where
the main thermal inhibition occurs (see Fig. 2
of Ref. 4) and can be seen to agree with the re
suits from Ref. 5. Note that in this region of
x,/L, the mean free path, x, of the electrons
carrying most of the energy (for V-2v, „, y
= 16K,) is approximately equal to the tempera-
ture gradient scale length, L, supporting our
premise that the heat flux there is predominantly
local (one might anticipate this result by analogy
with the results for the minimum thickness for a
strong shock). " Our local treatment cannot pre-
dict the preheating at the base of the front where
nonlocal contributions dominate, and the heat flux
cannot be described in terms of local (xVT) vari-
ables.

The reduction of the heat flux obtained by use of
a variety of methods for various values of the
flux limiter a are also illustrated in Fig. 2. The
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shaded area, indicating the "inhibition" obtained
for 0.03 &a & 0.1 from harmonic-mean methods
used to fit experimental results, "'encompasses
both curve III and the Ref. 5 (n -O. I) results.
Curve IV shows that the harmonic-mean method
with n = 0.06 is in reasonable agreement with our
self-consistent model as a function of y,/L. An-
other method, which computes the minimum of
the S-H and Q~ with n =0.06 (curve V) agrees
with our results only for xJ'L ~ 0.02.

In conclusion we have presented a simple self-
consistent model for the thermal heat Qux limita-
tion in steep temperature gradients giving a new
upper bound much lower than that of the free-
streaming limit. An advantage of this limitation
model is that the effect of the local contributions
to the heat flow are clearly isolated. It also ap-
pears that the trend indicated by the particular
Fokker-Planck result of Ref. 5 for the reduced
flux at the top of the heat front is of general ap-
plicability.

Our analysis shows that the need for the anom-
alously small o.'s to fit experimental results
resulted from a misinterpretation of the free-
streaming limit as representative of the maxi-
mum heat flux which can be carried by a plasma
in extreme conditions. Furthermore, the re-
duction is related to the conditions at the heat
front itself, dependent on xJL, and not directly
to physical processes unique to the laser-plasma
interaction, and therefore should apply at all
stages of pellet implosion involving heat flow.
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