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frequency detuning. Finally, the emission spec-
trum (vibrational intensities) must be independent
of the wavelength of the transfer laser. All of
these properties are in direct contrast to what is
actually observed.

It is possible to make an estimate of the cross
section observed experimentally for the sum of
processes (la) and (lb). We calculate that 2/o of
the A'0 state is transferred to the B'Z' state via
this laser-assisted collisional process at 8 &10'
W/cm. This corresponds to a total cross section
of o, +b —-5x10 "cm' compared to our estimate
of cr, +b =20x10 "cm'. Agreement is reasonable
considering the total uncertainties in the input

parameters.
This work shows the important role that laser-

assisted collisional phenomena can play in laser
spectroscopy studies at high laser intensities.
As the first observation of switched collisions
to achieve inelastic energy transfer in a molecu-
lar system, it is an important step in developing
and understanding models for laser field effects
in molecular dynamics, and provides the basis
for exploring dressed-state chemistry in other
areas such as photofragmentation and even reac-
tive scattering. Finally, the large cross sections
achieved in these experiments establish the feasi-
bility of future applications, as for example ex-
citing vacuum ultraviolet lasers.
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Transition to Chaotic Behavior via a Reproducible Sequence
of Period-Doubling Bifurcations
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We present the results of measurements of the vertical and horizontal temperature
gradients in a Rayleigh-Benard cell. By an appropriate preparation of the initial state,
the system can be brought into a single-frequency oscillatory regime. Further stepwise
increase in the imposed temperature gradient makes the system go through a reproducible
sequence of period-doubling bifurcations up to f&/16. The Feigenbaum 5 and p, universal
numbers are determined.

PACS numbers: 47.25.-c
A recent theory by Feigenbaum" suggests that

nonlinear systems which can be led into chaotic
behavior via a sequence of period-doubling bi-

furcations will exhibit universal behavior. As
the stress parameter ~ is increased, the bifurca-
tion points X„occur in such a way that the ratio
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5„=(A.„+,—A.„)/g„+, —A.„„)will approach the uni-
versal number 5 =4.669. . . . Furthermore, an
appropriately defined ratio of the amplitudes of
the Fourier components of neighboring sub-
harmonics will also approach a universal number
p, = 6.574. . . .

Experimental evidence supporting the applica-
bility of the Feigenbaum picture to real physical
systems is not very rich. Libchaber and Maur-
er' ' have reported spectra obtained in a low-
Prandtl-number Rayleigh-Benard system showing
remarkable agreement with the regular subhar-
monic amplitude decrease predicted by the theory.
Because of the lack of resolution in R/R, , the
number 5 could only be estimated. Gollub and
Benson' have reported on the observation of
period-doubling bifurcations in an intermediate-
Prandtl-number Hayleigh-Benard system. Again
the spectra shown exhibit the regular decrease
in subharmonic amplitudes.

In this Letter we report on results obtained in
a low-aspect-ratio Rayleigh-Benard cell filled
with water. We have found a technique for the
preparation of the initial state of the system
which leads to a very reproducible sequence of
period-doubling bifurcations up to f,/16. We de-
termine the first three terms in the 5„sequence.
Also we determine the value of the number p, for
a few spectra close to bifurcation points. The
overall experimental evidence is in favor of the
Feigenbaum picture.

The inner volume of the convection cell is 25
mm wide, 15 mm long, and 7.9 mm high. The
lateral boundaries are four 5-mm-thick glass
plates. They are glued between two aluminum
blocks, whose temperature difference is con-
trolled to within 2 mK (hT,&„, is close to 7 K).
Measurements of the vertical and horizontal
temperature gradients averaged along a horizon-
tal line parallel to the short side, roughly at
midheight, and close (3 mm) to the sidewall, are
obtained by a laser-beam-deflection technique.
Deflections along both axes are determined simul-
taneously to an accuracy of a few microradians
with the aid of a two-axis solid-state quadrant
sensor (typical angular oscillations are close to
1 mrad). The two signals can be plotted one
against the other on an XF recorder (pen recorder
or digital oscilloscope). Alternatively, each sig-
nal can be fed to a fast-Fourier-transform ana-
lyzer for spectral analysis.

An important point we must make is related to
the manipulations we perform in order to prepare
the initial state of the system. If the temperature
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FIG. 1. Plots of vertical temperature gradients vs
horizontal temperature gradients for different values
of R/R

difference is increased in small steps starting
from zero, and observations are made under
stationary conditions at each fixed temperature
difference, we notice that the system has a quite
complicated behavior and the route to chaos does
not seem to be uniquely defined. We have not
attempted to collect data under these conditions
and therefore we cannot make any meaningful
comparison with the results obtained by other
authors' under similar conditions. We have found,
however, that if we suddenly apply a large tem-
perature difference (larger than &T,„„,), and
then we rapidly come back to smaller AT values,
the system starts oscillating very regularly. If
the temperature difference is then changed in
small steps, the system can be brought into dy-
namical states which are very reproducible.
Each run (which lasts typically two weeks) con-
sists therefore of one initial quenching operation
followed by a sequence of small variations of the
temperature difference. Each measurement is
performed at fixed b,T (hT is our stress param-
eter X). Data collected over three runs show
very good consistency, and the details of the ini-
tial quenching operations seem to have little in-
fluence. It appears that the quenching technique
brings the system into a phase-space basin from
which a Feigenbaum-type route to chaos is ac-
cessible.

The actual planform of the instability is rather
unclear. Crude whole-field shadowgraph obser-
vations indicate that the temperature-gradient
oscillations are generated by propagating features
which regularly pass under the exploring beam.
It seems unlikely that we are dealing with oscil-
lations of a simple spatial structure like in the
case of the oscillatory instability studied by Lib-
chaber and Maurer. '4 In Fig. 1, we report a
sequence of temperature-gradient orbits ob-
served at different values of bT (R/R, values
are reported, where R is the Rayleigh number
and R, is the value at threshold for convection).
Splittings leading to the appearance of f,/8 can
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be easily identified in the sequence. We point
out that each orbit has been retraced at least
fifteen times. Also, orbits obtained at the same
R/R, but on different days are virtually super-
imposable, and this justifies our previous com-
ments on the general reproducibility of the data.

We must point out, however, that orbits can
appear in a rather different form. Immediately
after a bifurcation, orbits split into two closely
lying replicas that eventually become more
separated and distorted as x is further increased.
By recording the orbit traces over extended
periods of time, we noticed that the separation
of the newly split orbits did not remain constant.
Indeed, the orbits execute a very slow oscillatory
motion passing back and forth through each other.
The orbits never quite retrace themselves, thus
indicating that the oscillatory motion occurs at an
incommensurate frequency. This effect is quite
noticeable after the ~, and ~~ bifurcations. Some-
where in between p, and ~~ the oscillations dis-
appear, and the orbits resume their stable form
as indicated at the end of the sequence in Fig. 1.
Beyond ) 4, however, we have never been able to
observe stable sixteenfold orbits.

The above observation is essential in order to
understand some features of the spectra shown
in Fig. 2. The spectra refer to the signals of the
horizontal temperature gradient recorded after
the x„x„and x4 bifurcations. The position of
the fundamental frequency f, is indicated by the
arrow. At R/R, =62.6 the f,/4 is already present,
and all the frequency components are in the form
of sharp peaks. At R/R, =66.2 the emerging f,/8
appears in the form of a finely divided doublet,
with separation close to f,/38. Notice that all the
other features are sharp, as expected as a con-
sequence of the orbit oscillatory behavior (orbit
oscillations introduce an almost 100% modulation
on the emerging subharmonic and its odd mul-
tiples). At R/R, = 67.4 the emerging subharmonic

f,/16 is in reality an even more widely spaced
doublet with separation close to f,/19 (twice that
of the previous bifurcations). Lack of graphical
resolution prevents close examination of the de-
tail, but expanded scale plots show the splitting
in a very unambiguous way. Notice that at this
stage the splitting is barely larger than the fre-
quency of the new subharmonic.

At this stage, we can attempt to estimate the
Feigenbaum universal number p. Unfortunately,
the interpolation and averaging procedure neces-
sary to construct S(i) according to the original
Feigenbaum scheme is fairly complex and diffi-
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FIG. 2. Horizontal temperature-gradient spectra
obtained close to A&, A3, and &4. The arrow indicates
the position of f&.

cult to use in analyzing our data. (It is best ap-
plicable when a large number of bifurcations has
occurred. ) We have, therefore, taken for S(i) the
geometric average of the odd multiples of the
2'th subharmonic, and we define p„, as the ratio
S(i)/S(i + 1) evaluated immediately after the Z„
bifurcations. ' If the average is taken up to 2f„
we obtain p, , =4.1, p~, , =3.8, and p~, , =3.8. An
average up to 4f, yields p» =4.0, p~, = 4.2, and

p4, ——3.6. These numbers are appreciably lower
than the value reported in the introduction but in
slightly better agreement with the value p, - 5.0
estimated by Feigenbaum' when one takes for
S(i) the geometric average We can als.o compare
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FIG. 3. Log-log p1ot off, as a function of c = (Rchaos
-A)/B ch», . The data have been obtained over three
runs. The location of bifurcations is reported together
with error bars indicating the e ra&~es outside which
the presence (or absence) of a new subharmonic could
be unambiguously as signed.

5, =3.6, and 5, =4.3 and typical error bars can be
estimated from the figure.

Beyond the last bifurcation we have indications
that the system is deviating from the Feigenbaum
picture. It is tempting to say that the crossover
between the last subharmonic frequency and orbit
oscillation frequency is heralding the premature
termination of the sequence.

We are greatly indepted to A. Libchaber and
M. Feigenbaum for illuminating discussions.
Thanks are also due to F. Busse, V. Degiorgio,
D. Cannell, H. Cummins, and to M. Corti for the
loan of the analyzer. This work was supported
by the Consiglio Nazionale delle Ricerche-Centro
Informazioni Studi Esperienze, Contract No.
80.00016.02.

our results with the prediction p, =4.58 put forward
by Nauenberg and Rudnick' who take for S(i) the
rms integrated spectrum over all odd subharmon-
ic multiples. When analyzed in this way, our
data give p, , = 3.3, p, , = 3.0, and p4, = 4.0
(averaged up to 4f,). Experimental results seem
invariably smaller than the theoretical predic-
tions.

Since the locations of the first four bifurcations
are known, we can calculate the first three values
of the 5„sequence. They are 5, =1.35, 5, =3.16,
and 5, = 3.53. Estimates for 5„can also be ob-
tained by presenting the data in a different way.
From the location of the bifurcations we can
estimate R,h,o, . We report in Fig. 3 the behavior
of f, as a function of e = (R,„„,-R)/R, z„, , and
we indicate the location of the bifurcations on
this scale. Since the plot is logarithmic, the
spacing of the bifurcations should approach a
constant length (this is a consequence of the fact
that the g„are described by a geometric se-
quence). In Fig. 3 we also report the length of
the Feigenbaum ratio (F.R.) for comparison. The
actual values thus determined are 5, =2, 5, = 3.3,
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