
VOLUME 47, NUMBER 26 PHYSICAL REVIEW LETTERS 28 DECEMBER 1981

tan, and H. R. Robl (Plenum, New York, 1981), p. 127.
Rajarshi Roy, R. Short, J. Durnin, and L. Mandel,

Phys. Rev. Lett. 45, 1486 (1980).
J. A. White, Phys. Rev. 137, A1651 (1965).
See, for example, H. Haken, Synexgetics (Springer,

Berlin, 1978), Chaps. 6 and 7.
W. E. Lamb, Jr. , Phys. Rev. 134, A1429 (1964).
M. Sargent, III, M. O. Scully, and W. E. Lamb, Jr. ,

I.aser Physics (Addison-Wesley, Reading, Mass. ,
1974), Chap. 11.

J. B. Hambenne and M. Sargent, III, IEEE J. Quan-
tum Electron. 11, 90 (1975).
"S.Grossmann and P. H. Richter, Z. Phys. 249, 43

(1971),
M. M-Tehrani and L. Mandel, Phys. Rev. A 17, 677

(1978) .
Surendra Singh and L. Mandel, Phys. Rev. A 20,

2459 (1979).
14K. Kaminishi, Hajarshi Roy, R. Short, and L. Man-

del, Phys. Rev. A 24, 370 (1981).

Oscillatory Phenomena and 0 Switching in a Model for a Laser with a Saturable Absorber
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Sufficiently long population decay times and sufficiently short dipole decay times in a
single-mode laser with saturable absorber permit passive Q switching in the form of a
hard-mode sustained relaxation oscillation.

PACS numbers: 42.60.-v, 05.70.Ln
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A dot over a quantity indicates time derivative.
E is the electric field; D is the atomic inversion;
v is the polarization; yll and y& are longitudinal
and transverse relaxation rates, respectively; K

is the photon decay rate in the cavity, ~ =c(1-R)/
I-, where R is the ref lectivity of the mirror at
the boundaries and L is the length of the cavity;
o is the unsaturated inversion; Ã is the number
of atoms; and Igl is the field-matter coupling
constant. A bar over a quantity refers to the
passive atoms. c is the velocity of light.

We now write

& =- (r imari)"'a/2I gl,

U =-&Igl (yii/4yi)"'p, U =-O'Igl (r p/4ri)"'p,

D =(T(1 —d), D =cT(1 —2) ~
t =r gt ~

~ =y (1/rg~

r, =r i/r i, r, =r ii/y ii, p = ~/r ~,

w =el gl'~/~y. ,

A saturable absorber in a cavity permits emis-
sion of trains of pulses (passive Q switching). "
We show that this phenomenon appears as a limit-
cycle oscillation in a model of a laser with ab-
sorber. ' Using the notation introduced in Ref. 3
we have

and

C =1 —&I gl'o'/~y ~

We obtain the following dimensionless equations:

a =p[-a+Ap+r, (l —C)P]

j=a(1-d) -p

p =a(1 -d) -Pr,
d =(u(-d+aP)

d =(u( r, d +ay)-.
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(1 —r, )
' =- C, - C - (p +r, )/'p (1 —r, ) = C. , „

the zero-field solution is stable up to 4 =C where

We set &, =1, i.e., we take the longitudinal relaxa-
tion time, T, =1/y~~, the same for both active and

passive atoms which is consistent with the as-
sumption of resonance between the emitting and
absorbing transitions. We fix ~ =0.01, i.e. , we
take the transverse relaxation time, T, =1/y&,
to be two orders of magnitude smaller than T,.
We also take p = 0.1 and ~ & p. For related prob-
lems with, however, different parameter ranges
see Knapp, Risken, and Wollmer. '

The pumping rates are hidden in A and C. With-
out absorber the threshold for laser behavior is
at 4 =1, and the steady-state laser intensity
grows with A. —1. The absorbing medium is
pumped as an emitter if C is smaller than unity,
with threshold at C =1-1/r, . Thus we restrict
t" to be larger than unity.

For
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a branch of steady solutions bifurcates subcriti-
cally like in a first-order (hard mode) transi-
tion. Thus there is a region of values of A where
two steady states are available to the system,
since the middle branch is always unstable (see
Fig. 1). Hysteretic phenomena have been ob-
served in experiments. ' Note that in a related
problem' oscillations exist for A larger than
C„,which corresponds to the standard Hopf bi-
furcation. ' We do not consider this case here.

The linear stability analysis of the upper non-
linea~ b~anch of steady values shows that it is
unstable for the range of parameters given earlier
in this Letter. This phenomenon is mathematical-
ly analogous to a case found in optical bistability. '
It shows the danger of a straightforward exten-
sion of the equilibrium phase transition picture
to (dynamic) nonequilibrium problems (as done,
for instance, in Befs. 6 and 10). Even though one
is able to build a Landau potential which has as
extrema the different steady states of (1) or (&)

or a similar system knowing that a state ls
a minimum is not enough to assess its stability.
One must show that the Landau potential is a
Lyapunov functional of the system. This is not
an easy task and it has been disregarded in all
oversimplified descriptions of dynamic transi-
tions. " In the laser without absorber the poten-
tial appears associated to a one-dimensional
Fokker-Planck equation when there is adiabatic
elimination of all variables other than the field.""
It turns out that the smallness of & with respect

TABLE I. Characteristics of the oscillations I pulse
intensity, time period, and full width at half maximum
(FWHM)] for p = 0.1, x& = 0.4, and C = 6. As a refer-
ence, the intensity of the (unstable) steady state (upper
branch in Fig. 1) is 2.7 for A = 6.1. Units are in ac-
cordance with the scales introduced in the main text.

Intensity (max/min) Period FWHM

6.05
6.10
6.15
6.20

26.0/4xl0 5

26.0/4x 10 4

25.5/2x 10 3

23.5/1x 10 '

675
433
327
260

12
12
13
16

to p (which is of order or smaller than 0.1) for-
bids the elimination here.

Returning to Fig. 1 we have also found that at
A. =A„ there is a right-hand bifurcation from the
uPPer nonlinear branch, With use of Floquet the-
ory' and a two-time scale method" it appears
that the bifurcation is subcritical to limit cycle
and, therefore, initially unstable. The steady
state is stable for A ~A„.

All these results are valid in a range of values
around p =0.1, and r, &1 (for illustration we set
r, =0.4). The value of p corresponds to a 1-m
cavity with some 3lo losses if we take y~ = 10 '
s '. The condition &,&1, and thus T,&T„ is con-
sistent with having a gain cell with higher gas
pressure than that in the absorber. "

The divergence of the vector field (2) is alsoays
negative and there must be an attractor in the
solutions. As none of the steady states is stable
nor does any smooth limit cycle bifurcate from

c=6
r, = 0.4

$ r
r
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FIG. 1. Bifurcation diagram of (2) at p =0.1, ~& ——0.4,
and C = 6. Solid and broken lines indicate stable and
unstable solutions respectively. The limit cycle (LC)
bifurcates subc~itically at A =A„=6.2344. S denotes
steady states. The vertical dotted lines delineate the
region of Q switching (C = 6 &A &A„). Units are in
accordance with the scales introduced in the main
text.
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FIG. 2. Train of pulses (Q switching) as a particular
case of limit-cycle solution of (2) for p= 0.1, x~= 0.4,
C = 6, and A= 6.10. The electric field intensity is a2.
The time (t') unit is ~'q= 1/p&. The height of the pulses
is am, „=26. Units are in accordance with the scales
introduced in the main text.
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FIG. 3. The relevant quantities in the Q switching of
(2). (a) Polarization of atoms in the absorber vs elec-
tric field amplitude for a time period in the limit cycle.
Note the cusp-like approach to the origin of coordinates
as expected in a saddle-loop singularity. (b) Time
evolution, during a period, of population inversions
(emitter, 1-d; absorber, d-1). For illustration, the
solid line accounts for the pulse (not to scale here).
Values of 1 (respectively, —1) account for all atoms in

the excited (respectively, ground) state. Parameter
values are those used in the preceding figures and

units are in accordance with the scales introduced in
the main text.

width of the pulses is of the order of the photon
lifetime in the cavity, i.e., 1/~ (1/p, in dimen-
sionless units). The period is of the order of the
decay time of the excited state, T, (1/&u in our
units). "

Figure 3 illustrates the behavior of the relevant
quantities (polarization and population inversion)
during one cycle. Note that at 2 =1 the absorber
becomes transparent with equal numbers of atoms
in the excited and ground states. It actually be-
comes active (2& 1) for a short interval during the
rising of the pulse, and cooperates with the ac-
tive cell.

Table I also shows that the pulse peak intensity
decreases with increasing pumping rate, A . Its
value is an order of magnitude higher than the
value of the corresponding unstable steady state.
The time interval between pulses decays with in-
creasing A. These features agree with the de-
scription given by Hanst, Morreal, and Henson. '
WhenA tends to A.„ from below, the pulses broad-
en and tend more and more towards a smooth
limit cycle keeping, however, a nonzero ampli-
tude and finite period at A =A„. Thus, we expect
this Q-switched branch to join the initially unsta-
ble solution (somewhere at A &A,). When A ap-
proaches C from above, the limit-cycle period
rises dramatically, the minimum intensity tends
to zero, and the peak intensity remains essential-
ly constant. These features are characteristic of
a saddle loop'8 at A =C [Fig. 3(a)]. At A around
C the cycle tends to a single pulse with infinite
rising and decaying times but, however, finite
width and height, very much like in the & pulses
described by Arecchi and Bonifacio." It is not
a hyperbolic-secant pulse since it does not rise
from zero exponentially but according to some
power law as the trivial zero state is only mar-
ginally unstable at A =C.

The authors acknowledge fruitful discussions
with F. T. Arecchi and L. L. Bonilla. This re-
search has been sponsored by the Stiftung Volks-
wagenwerk.

A„ to the left, we have explored the region C&~
&A„by means of the Poincare map with numeri-
cal integration of (2). We have located a relaxa-
tion oscillation as shown in Fig. 2. This limit
cycle appears as a, finite-amplitude solution and
bears dramatic similarity with the experimentally
observed self pulses in passive Q switching. ""
Table I gives an illustration of the results. The
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