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Macroscopic Quantum Fluctuations and First-Order Phase Transition in a Laser
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A homogeneously broadened two-mode ring laser has two metastable states in which one
or the other mode intensity is zero. Quantum fluctuations cause the system to switch
spontaneously, and at random times, between these states. The probability distribution
of the light intensity of one laser mode has been measured, and found to exhibit two com-
pletely resolved peaks at zero and nonzero intensities, as predicted. This confirms the
existence of a first-order laser phase transition.

PACS numbers: 42.50.+q, 42.60.Eb

Numerous experiments with single-frequency
ring lasers have demonstrated that, when the
gain medium is homogeneously broadened, one of
the two traveling-wave modes tends to suppress
the other one.!"® This phenomenon, which ap-
pears to have been first predicted by White,® is
the result of mode competition for the emitted
photons. The equations of motion of the two-
mode laser exhibit two metastable solutions, in
which one or the other mode amplitude is zero.
However, in general there is no stable state,
and sooner or later a large quantum fluctuation
causes the system to switch spontaneously from
one metastable state to the other. The mode
switching is associated with a discontinuity in the
order parameter for the phase transition of the
laser field,” and therefore corresponds to one of
the few cases in which a laser exhibits a first-
order phase transition.* As a result of the met-
abistability, the probability distribution ®(7) of
the light intensity I of either mode exhibits two
peaks, for which evidence has recently been ob-
tained by photon-counting experiments.* How-
ever, it was not possible to extract the form of
®(I) explicitly from the counting measurements.
We now wish to report the results of direct mea-
surements of the probability distribution ¢(I),
that confirm the existence of the first-order
laser phase transition in a quantitative manner.

The equations of motion for the slowly varying
complex mode amplitudes E,(#), E,(¢) of a two-
mode laser were already derived by Lamb.?’®
With the addition of Langevin noise terms g,(¢),
g-(?) to represent the spontaneous emission
fluctuations, and in dimensionless units, they

@(11) = const Xe}{p[%(gz— 1)112 —%(azﬁ —a1)11+ia22] [1 _eXp(%gll’%az)] .

take the form
dE,/dt =(ay = | E,|® £ | Eo| DEy + ¢y,
dEy/dt =(ay— | E|? —£| EL|DE, + ¢,

1)

a,, a, are dimensionless pump parameters
characterizing the excitations, and ¢ is the mode
coupling constant, which has the value 2 for a
homogeneously broadened medium.®° Corre-
sponding to Eq. (1), the joint probability distribu-
tion p(E,, E,,t ) of the two mode amplitudes E,,
E, obeys a four-dimensional Fokker -Planck
equation, whose steady-state solution can be
written!?-13

b (Ey, E)) = const xe™7 (2)

-1 1 Lr2.172,1
Us=-3za,1,—za,1,+31," +3L,"+581,1,,

when expressed in terms of intensities I, =| E, |2,
I,=|E,|2. The form of the “potential” U(I,,1,)
is illustrated in Fig. 1 for two different values of
¢. It has a single minimum, corresponding to a
stable state with nonzero 1,,I, when ¢ =%, but
two minima separated by a saddle when ¢ =2,
Both these minima correspond to highly probable
states in which one mode intensity is zero while
the other one is nonzero. Quantum fluctuations
drive the representative point in phase space
from one minimum to the other at random times,
and at time intervals that get progressively longer
as the pump parameters increase, because the
saddle point moves up.*'® The light intensity of
each mode therefore tends to jump randomly be-
tween zero and nonzero values.

By integrating Eq. (2) over one variable, I,,
say, we obtain for the probability distribution
®(1,) of the other one

(3)

The form of ®(I,) is illustrated in Fig. 2(a) for £=2, a=9, Aa=0.29. It has two branches, correspond-
ing to one peak at I; =0, the low-intensity peak L, and a high-intensity peak H at I, =1,, with

Iy,~a-4/(a+3%Aa),
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FIG. 1. The form of the potent1a1 U1y,
a;=14.5 for coupling constants (a) £=3; (b) £=2.

where a= 3(a, +a,), Aa= a, —a,. The areas under
these two peaks yield the probabilities P, or Py
that the light intensity 7, is low or high, respec-
tively, and it can be shown from Eq. (3) that they
are given by*

P
~[1+e**¥2(a% §Aa)/(at 3Aa)]"t  (5)
Py
while their ratio is
Pu/Pym ette/2m3tale (6)

For a symmetric two-mode laser with Aq =0,
P, =%=Py,. Also from Eq. (3) we have the ratio

®(1,)/P,~0.28, W)

whereas the ratio of the L to H peak heights is
approximately given by :

®0)/¢(1,)
~7'2q exp(-tara+ $Aa/a - 4/a® . (8)

As a increases, this decreases from values
greater than unity to values below unity when

I,) with a;=15,
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- FIG. 2. The form of the probability distribution ¢(I)
with £ =2, a=9, Aa=0.29. (a) Computed from Eq. (3);
(b) measured.

Aa>0. The most probable value of the light in-
tensity 7,, which is an order parameter for the
phase transition, therefore changes discontinu-
ously from zero to nonzero values.

We have measured the probability distribution
®(I) directly for a dye ring laser, by aiming the
laser beam on a photodiode and sampling the out-
put of the diode at regular intervals with the aid
of a pulse-height analyzer. Figure 3 shows an
outline of the apparatus. The active laser medi-
um is rhodamine-6G dye in methanol and water,
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FIG. 3. Outline of the apparatus.

1893



VoLUME 47, NUMBER 26

PHYSICAL REVIEW LETTERS

28 DECEMBER 1981

that is circulated at high velocity through a cell,
and is optically pumped by an argon-ion laser.

A movable knife edge acts as a variable loss,
that allows the working point of the laser to be
controlled. The three etalons shown ensure
single-frequency, two-mode operation. Two light
beams emerge in slightly different directions
from the output mirror of the ring laser, corre-
sponding to the two counterpropagating modes,
and one or the other is directed to the photodiode.
The amplified output of the diode is proportional
to I,(¢) or I,(¢) to a good approximation. The
fluctuating detector signal is passed to a sample-
and-hold circuit, that is activated by an external
sampling pulse at regular intervals of 1 msec,
and then maintains its output level long enough
for it to be channeled to the appropriate bin of a
multichannel pulse-height analyzer. Each channel
n(n=0,1,2,...,100) corresponds to a certain
light intensity 7, and the number of events N,
accumulated in channel n eventually provides a
measure of the probability density ®(7) through
the relation

®(1)6I =N,/ 2J N, , (9)

where 67 is the channel width. Typical values of
N, range from 10* or 10° near the peaks to less
than 10 between peaks.

In order to relate the experimental results to
the theoretical Eq. (3), we need to determine the
two pump parameters g, and a, or a and Aq, and
also the channel width 67. We first calculate the
probabilities P, and P, by summing the counts
N, falling under each peak separately, and divid-
ing by the total number Z)N,, . We then use Egs.
(7) and (9) to determine 67. Equation (4), which
is rather insensitive to the value of Aq, then
yields a, whereupon Eq. (6) can be solved for Aa.
This procedure avoids use of the value ®(0)
determined from the experiment, which is most
uncertain, as we point out below.

We might point out that a dye laser is some-
times turned on and off as a result of completely
spurious causes, such as bubbles within the dye
solution. Such spurious effects may play a role
far above threshold, when the spontaneous
switching periods become seconds or minutes
long, but they are usually unimportant in the
threshold region, where the switching times are
of order 10 msec. Moreover, bubbles are un-
likely to result in complete anticorrelation be-
tween the two modes,* or in the very strong de-
pendence of the switching period on pump param-
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eter, such as we have observed,’ and as predicted
by the equations of motion (1).

In Fig. 2 some experimental values of ®(I) are
compared with the theoretical probability distri-
bution given by Eq. (3) for £ =2, a=9, Aa=0.29,
61 =0.30. The two distributions are qualitatively
similar, although there are quantitative differ-
ences. In practice the high-intensity tail of each
peak falls to zero more rapidly than the theory
predicts. Indeed, the peak at =0 decays almost
to zero in less than one analyzer channel width
61, so that @(0) given by Eq. (9) is not really the
differential probability density, but an integral
over 6. We believe that the suppression of small
values of the light intensity is probably attributable
to backscattering from one ring laser mode into
the other, for which evidence has already been
encounted.* It is also conceivable that the exis-
tence of triplet states in the dye molecule plays
some role in causing departures from the usual
laser theory.* However, the measured probabil-
ity distribution clearly exhibits the predicted
two, highly probable, metastable laser states,
with a region of almost zero probability in be-
tween. As the pump parameter is raised, ®(7,)
is found to increase gradually while @(0) falls.
Eventually ®(7,) >®(0), at which point the most
probable light intensity jumps from 0 to a non-
zero value, and this implies the existence of a
discontinuity of the order parameter for the phase
transition.

Spontaneous on-off switching of the two mode
intensities is one of relatively few direct macro-
scopic manifestations of quantum fluctuations in
physics. A single, spontaneously emitted photon
can cause two rather intense laser beams to be
turned on and off in this experiment.
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Sufficiently long population decay times and sufficiently short dipole decay times in a
single-mode laser with saturable absorber permit passive & switching in the form of a

hard-mode sustained relaxation oscillation.

PACS numbers: 42.60.-v, 05.70.Ln

A saturable absorber in a cavity permits emis-
sion of trains of pulses (passive @ switching).!*?
We show that this phenomenon appears as a limit-
cycle oscillation in a model of a laser with ab-
sorber.>’* Using the notation introduced in Ref. 3
we have

E =Nv +Nv - kE, (1a)
b =|gl?DE =y .v, (1p)
v =|gl’DE -7.7, (Lc)
D==y,D - 40E +y,0, (1d)
D=-5,D —49E +7,0. (le)

A dot over a quantity indicates time derivative.
E is the electric field; D is the atomic inversion;
v is the polarization; v, and y. are longitudinal
and transverse relaxation rates, respectively; «
is the photon decay rate in the cavity, « =c(1 -=R)/
L, where R is the reflectivity of the mirror at
the boundaries and L is the length of the cavity;
o is the unsaturated inversion; N is the number
of atoms; and | g| is the field-matter coupling
constant. A bar over a quantity refers to the
passive atoms. c is the velocity of light.

We now write

== () %a/2l gl,
v=—0lgl /4 )%, v==0lglb/4.)"%,
D=0(1-d), D=0(1=4), t'=y.it, w=yy/vi,
V1=7—/L/7/l’ 7’2=?u/7’n, P=K/7’u
A =N|gl%/ky .,
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and
C=1-Nlgl%/ky ..

We obtain the following dimensionless equations:

a=pl-a+Ap +r,(1-C)p] (2a)
b=a(l -d)-p (2b)
p=a(l -3)-pr, (2c)
d=w(—d +ap) 2d)
d =w(=7,d +ap). (2e)

We set v, =1, i.e., we take the longitudinal relaxa-
tion time, T, =1/y,, the same for both active and
passive atoms which is consistent with the as-
sumption of resonance between the emitting and
absorbing transitions. We fix w =0.01, i.e., we
take the transverse relaxation time, T,=1/y,,
to be two orders of magnitude smaller than T',.
We also take p=0.1 and w<p. For related prob-
lems with, however, different parameter ranges
see Knapp, Risken, and Wollmer.®

The pumping rates are hidden in A and C. With-
out absorber the threshold for laser behavior is
at A =1, and the steady-state laser intensity
grows with A — 1, The absorbing medium is
pumped as an emitter if C is smaller than unity,
with threshold at C =1 -1/r,. Thus we restrict
C to be larger than unity.

For

(1- Vl)-l =C,sCs (o +71)/p(1 "7’1)5 Coses
the zero-field solution is stable up to A =C where
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